This is “End-of-Chapter Material”, section 6.7 from the book Beginning Chemistry (v. 1.0). For details on it (including licensing), click here.
For more information on the source of this book, or why it is available for free, please see the project's home page. You can browse or download additional books there. To download a .zip file containing this book to use offline, simply click here.
What is the pressure in pascals if a force of 4.88 kN is pressed against an area of 235 cm^{2}?
What is the pressure in pascals if a force of 3.44 × 10^{4} MN is pressed against an area of 1.09 km^{2}?
What is the final temperature of a gas whose initial conditions are 667 mL, 822 torr, and 67°C and whose final volume and pressure are 1.334 L and 2.98 atm, respectively? Assume the amount remains constant.
What is the final pressure of a gas whose initial conditions are 1.407 L, 2.06 atm, and −67°C and whose final volume and temperature are 608 mL and 449 K, respectively? Assume the amount remains constant.
Propose a combined gas law that relates volume, pressure, and amount at constant temperature.
Propose a combined gas law that relates amount, pressure, and temperature at constant volume.
A sample of 6.022 × 10^{23} particles of gas has a volume of 22.4 L at 0°C and a pressure of 1.000 atm. Although it may seem silly to contemplate, what volume would 1 particle of gas occupy?
One mole of liquid N_{2} has a volume of 34.65 mL at −196°C. At that temperature, 1 mol of N_{2} gas has a volume of 6.318 L if the pressure is 1.000 atm. What pressure is needed to compress the N_{2} gas to 34.65 mL?
Use two values of R to determine the ratio between an atmosphere and a torr. Does the number make sense?
Use two values of R to determine how many joules are in a liter·atmosphere.
At an altitude of 40 km above the earth’s surface, the atmospheric pressure is 5.00 torr, and the surrounding temperature is −20°C. If a weather balloon is filled with 1.000 mol of He at 760 torr and 22°C, what is its
If a balloon is filled with 1.000 mol of He at 760 torr and 22°C, what is its
Air, a mixture of mostly N_{2} and O_{2}, can be approximated as having a molar mass of 28.8 g/mol. What is the density of air at 1.00 atm and 22°C? (This is approximately sea level.)
Air, a mixture of mostly N_{2} and O_{2}, can be approximated as having a molar mass of 28.8 g/mol. What is the density of air at 0.26 atm and −26°C? (This is approximately the atmospheric condition at the summit of Mount Everest.)
On the surface of Venus, the atmospheric pressure is 91.8 atm, and the temperature is 460°C. What is the density of CO_{2} under these conditions? (The Venusian atmosphere is composed largely of CO_{2}.)
On the surface of Mars, the atmospheric pressure is 4.50 torr, and the temperature is −87°C. What is the density of CO_{2} under these conditions? (The Martian atmosphere, similar to its Venusian counterpart, is composed largely of CO_{2}.)
HNO_{3} reacts with iron metal according to
Fe(s) + 2HNO_{3}(aq) → Fe(NO_{3})_{2}(aq) + H_{2}(g)In a reaction vessel, 23.8 g of Fe are reacted but only 446 mL of H_{2} are collected over water at 25°C and a pressure of 733 torr. What is the percent yield of the reaction?
NaHCO_{3} is decomposed by heat according to
2NaHCO_{3}(s) → Na_{2}CO_{3}(s) + H_{2}O(ℓ) + CO_{2}(g)If you start with 100.0 g of NaHCO_{3} and collect 10.06 L of CO_{2} over water at 20°C and 0.977 atm, what is the percent yield of the decomposition reaction?
208,000 Pa
1,874 K
$\frac{{P}_{1}{V}_{1}}{{n}_{1}}=\frac{{P}_{2}{V}_{2}}{{n}_{2}}$
3.72 × 10^{−23} L
1 atm = 760 torr
1.19 g/L
67.2 g/L
3.99%