This is “Review Exercises and Sample Exam”, section 5.7 from the book Beginning Algebra (v. 1.0). For details on it (including licensing), click here.

Has this book helped you? Consider passing it on:
Creative Commons supports free culture from music to education. Their licenses helped make this book available to you.
DonorsChoose.org helps people like you help teachers fund their classroom projects, from art supplies to books to calculators.

## 5.7 Review Exercises and Sample Exam

### Review Exercises

Rules of Exponents

Simplify.

1. $73⋅76$

2. $5956$

3. $y5⋅y2⋅y3$

4. $x3y2⋅xy3$

5. $−5a3b2c⋅6a2bc2$

6. $55x2yz55xyz2$

7. $(−3 a 2 b 42 c 3)2$

8. $(−2 a 3b4 c 4)3$

9. $−5x3y0(z2)3⋅2x4(y3)2z$

10. $(−25x6y5z)0$

11. Each side of a square measures $5x2$ units. Find the area of the square in terms of x.

12. Each side of a cube measures $2x3$ units. Find the volume of the cube in terms of x.

Introduction to Polynomials

Classify the given polynomial as a monomial, binomial, or trinomial and state the degree.

13. $8a3−1$

14. $5y2−y+1$

15. $−12ab2$

16. 10

Write the following polynomials in standard form.

17. $7−x2−5x$

18. $5x2−1−3x+2x3$

Evaluate.

19. $2x2−x+1$, where $x=−3$

20. $12x−34$, where $x=13$

21. $b2−4ac$, where $a=−12$, $b=−3$, and $c=−32$

22. $a2−b2$, where $a=−12$ and $b=−13$

23. $a3−b3$, where $a=−2$ and $b=−1$

24. $xy2−2x2y$, where $x=−3$ and $y=−1$

25. Given $f(x)=3x2−5x+2$, find $f(−2)$.

26. Given $g(x)=x3−x2+x−1$, find $g(−1)$.

27. The surface area of a rectangular solid is given by the formula $SA=2lw+2wh+2lh$, where l, w, and h represent the length, width, and height, respectively. If the length of a rectangular solid measures 2 units, the width measures 3 units, and the height measures 5 units, then calculate the surface area.

28. The surface area of a sphere is given by the formula $SA=4πr2$, where r represents the radius of the sphere. If a sphere has a radius of 5 units, then calculate the surface area.

Adding and Subtracting Polynomials

Perform the operations.

29. $(3x−4)+(9x−1)$

30. $(13x−19)+(16x+12)$

31. $(7x2−x+9)+(x2−5x+6)$

32. $(6x2y−5xy2−3)+(−2x2y+3xy2+1)$

33. $(4y+7)−(6y−2)+(10y−1)$

34. $(5y2−3y+1)−(8y2+6y−11)$

35. $(7x2y2−3xy+6)−(6x2y2+2xy−1)$

36. $(a3−b3)−(a3+1)−(b3−1)$

37. $(x5−x3+x−1)−(x4−x2+5)$

38. $(5x3−4x2+x−3)−(5x3−3)+(4x2−x)$

39. Subtract $2x−1$ from $9x+8$.

40. Subtract $3x2−10x−2$ from $5x2+x−5$.

41. Given $f(x)=3x2−x+5$ and $g(x)=x2−9$, find $(f+g)(x)$.

42. Given $f(x)=3x2−x+5$ and $g(x)=x2−9$, find $(f−g)(x)$.

43. Given $f(x)=3x2−x+5$ and $g(x)=x2−9$, find $(f+g)(−2)$.

44. Given $f(x)=3x2−x+5$ and $g(x)=x2−9$, find $(f−g)(−2)$.

Multiplying Polynomials

Multiply.

45. $6x2(−5x4)$

46. $3ab2(7a2b)$

47. $2y(5y−12)$

48. $−3x(3x2−x+2)$

49. $x2y(2x2y−5xy2+2)$

50. $−4ab(a2−8ab+b2)$

51. $(x−8)(x+5)$

52. $(2y−5)(2y+5)$

53. $(3x−1)2$

54. $(3x−1)3$

55. $(2x−1)(5x2−3x+1)$

56. $(x2+3)(x3−2x−1)$

57. $(5y+7)2$

58. $(y2−1)2$

59. Find the product of $x2−1$ and $x2+1$.

60. Find the product of $32x2y$ and $10x−30y+2$.

61. Given $f(x)=7x−2$ and $g(x)=x2−3x+1$, find $(f⋅g)(x)$.

62. Given $f(x)=x−5$ and $g(x)=x2−9$, find $(f⋅g)(x)$.

63. Given $f(x)=7x−2$ and $g(x)=x2−3x+1$, find $(f⋅g)(−1)$.

64. Given $f(x)=x−5$ and $g(x)=x2−9$, find $(f⋅g)(−1)$.

Dividing Polynomials

Divide.

65. $7y2−14y+287$

66. $12x5−30x3+6x6x$

67. $4a2b−16ab2−4ab−4ab$

68. $6a6−24a4+5a23a2$

69. $(10x2−19x+6)÷(2x−3)$

70. $(2x3−5x2+5x−6)÷(x−2)$

71. $10x4−21x3−16x2+23x−202x−5$

72. $x5−3x4−28x3+61x2−12x+36x−6$

73. $10x3−55x2+72x−42x−7$

74. $3x4+19x3+3x2−16x−113x+1$

75. $5x4+4x3−5x2+21x+215x+4$

76. $x4−4x−4$

77. $2x4+10x3−23x2−15x+302x2−3$

78. $7x4−17x3+17x2−11x+2x2−2x+1$

79. Given $f(x)=x3−4x+1$ and $g(x)=x−1$, find $(f/g)(x)$.

80. Given $f(x)=x5−32$ and $g(x)=x−2$, find $(f/g)(x)$.

81. Given $f(x)=x3−4x+1$ and $g(x)=x−1$, find $(f/g)(2)$.

82. Given $f(x)=x5−32$ and $g(x)=x−2$, find $(f/g)(0)$.

Negative Exponents

Simplify.

83. $(−10)−2$

84. $−10−2$

85. $5x−3$

86. $(5x)−3$

87. $17y−3$

88. $3x−4y−2$

89. $−2a2b−5c−8$

90. $(−5x2yz−1)−2$

91. $(−2x−3y0z2)−3$

92. $(−10 a 5 b 3 c 25a b 2 c 2)−1$

93. $( a 2 b −4 c 02 a 4 b −3c)−3$

The value in dollars of a new laptop computer can be estimated by using the formula $V=1200(t+1)−1$, where t represents the number of years after the purchase.

94. Estimate the value of the laptop when it is 1½ years old.

95. What was the laptop worth new?

Rewrite using scientific notation.

96. 2,030,000,000

97. 0.00000004011

Perform the indicated operations.

98. $(5.2×1012)(1.8×10−3)$

99. $(9.2×10−4)(6.3×1022)$

100. $4×10168×10−7$

101. $9×10−304×10−10$

102. 5,000,000,000,000 × 0.0000023

103. 0.0003/120,000,000,000,000

### Sample Exam

Simplify.

1. $−5x3(2x2y)$

2. $(x2)4⋅x3⋅x$

3. $(−2 x 2 y 3)2x2y$

4. a. $(−5)0$; b. $−50$

Evaluate.

5. $2x2−x+5$, where $x=−5$

6. $a2−b2$, where $a=4$ and $b=−3$

Perform the operations.

7. $(3x2−4x+5)+(−7x2+9x−2)$

8. $(8x2−5x+1)−(10x2+2x−1)$

9. $(35a−12)−(23a2+23a−29)+(115a−518)$

10. $2x2(2x3−3x2−4x+5)$

11. $(2x−3)(x+5)$

12. $(x−1)3$

13. $81x5y2z−3x3yz$

14. $10x9−15x5+5x2−5x2$

15. $x3−5x2+7x−2x−2$

16. $6x4−x3−13x2−2x−12x−1$

Simplify.

17. $2−3$

18. $−5x−2$

19. $(2x4y−3z)−2$

20. $(−2 a 3 b −5 c −2a b −3 c 2)−3$

21. Subtract $5x2y−4xy2+1$ from $10x2y−6xy2+2$.

22. If each side of a cube measures $4x4$ units, calculate the volume in terms of x.

23. The height of a projectile in feet is given by the formula $h=−16t2+96t+10$, where t represents time in seconds. Calculate the height of the projectile at 1½ seconds.

24. The cost in dollars of producing custom t-shirts is given by the formula $C=120+3.50x$, where x represents the number of t-shirts produced. The revenue generated by selling the t-shirts for $6.50 each is given by the formula $R=6.50x$, where x represents the number of t-shirts sold. a. Find a formula for the profit. (profit = revenuecost) b. Use the formula to calculate the profit from producing and selling 150 t-shirts. 25. The total volume of water in earth’s oceans, seas, and bays is estimated to be $4.73×1019$ cubic feet. By what factor is the volume of the moon, $7.76×1020$ cubic feet, larger than the volume of earth’s oceans? Round to the nearest tenth. ### Review Exercises Answers 1: $79$ 3: $y10$ 5: $−30a5b3c3$ 7: $9a4b84c6$ 9: $−10x7y6z7$ 11: $A=25x4$ 13: Binomial; degree 3 15: Monomial; degree 3 17: $−x2−5x+7$ 19: 22 21: 6 23: −7 25: $f(−2)=24$ 27: 62 square units 29: $12x−5$ 31: $8x2−6x+15$ 33: $8y+8$ 35: $x2y2−5xy+7$ 37: $x5−x4−x3+x2+x−6$ 39: $7x+9$ 41: $(f+g)(x)=4x2−x−4$ 43: $(f+g)(−2)=14$ 45: $−30x6$ 47: $10y2−24y$ 49: $2x4y2−5x3y3+2x2y$ 51: $x2−3x−40$ 53: $9x2−6x+1$ 55: $10x3−11x2+5x−1$ 57: $25y2+70y+49$ 59: $x4−1$ 61: $(f⋅g)(x)=7x3−23x2+13x−2$ 63: $(f⋅g)(−1)=−45$ 65: $y2−2y+4$ 67: $−a+4b+1$ 69: $5x−2$ 71: $5x3+2x2−3x+4$ 73: $5x2−10x+1+32x−7$ 75: $x3−x+5+15x+4$ 77: $x2+5x−10$ 79: $(f/g)(x)=x2+x−3−2x−1$ 81: $(f/g)(2)=1$ 83: $1100$ 85: $5x3$ 87: $y37$ 89: $−2a2c8b5$ 91: $−x98z6$ 93: $8a6b3c3$ 95:$1,200

97: $4.011×10−8$

99: $5.796×1019$

101: $2.25×10−20$

103: $2.5×10−18$

### Sample Exam Answers

1: $−10x5y$

3: $4x2y5$

5: 60

7: $−4x2+5x+3$

9: $−23a2−59$

11: $2x2+7x−15$

13: $−27x2y$

15: $x2−3x+1$

17: $18$

19: $y64x8z2$

21: $5x2y−2xy2+1$

23: 118 feet

25: 16.4