This is “Review Exercises and Sample Exam”, section 9.5 from the book Advanced Algebra (v. 1.0). For details on it (including licensing), click here.

Has this book helped you? Consider passing it on:
Creative Commons supports free culture from music to education. Their licenses helped make this book available to you.
DonorsChoose.org helps people like you help teachers fund their classroom projects, from art supplies to books to calculators.

## 9.5 Review Exercises and Sample Exam

### Introduction to Sequences and Series

Find the first 5 terms of the sequence as well as the 30th term.

1. $an=5n−3$

2. $an=−4n+3$

3. $an=−10n$

4. $an=3n$

5. $an=(−1)n(n−2)2$

6. $an=(−1)n2n−1$

7. $an=2n+1n$

8. $an=(−1)n+1(n−1)$

Find the first 5 terms of the sequence.

1. $an=nxn2n+1$

2. $an=(−1)n−1xn+2n$

3. $an=2nx2n$

4. $an=(−3x)n−1$

5. $an=an−1+5$ where $a1=0$

6. $an=4an−1+1$ where $a1=−2$

7. $an=an−2−3an−1$ where $a1=0$ and $a2=−3$

8. $an=5an−2−an−1$ where $a1=−1$ and $a2=0$

Find the indicated partial sum.

1. 1, 4, 7, 10, 13,…; $S5$

2. 3, 1, −1, −3, −5,…; $S5$

3. −1, 3, −5, 7, −9,…; $S4$

4. $an=(−1)nn2$; $S4$

5. $an=−3(n−2)2$; $S4$

6. $an=(−15)n−2$; $S4$

Evaluate.

1. $∑k=16(1−2k)$
2. $∑k=14(−1)k3k2$
3. $∑n=13n+1n$
4. $∑n=175(−1)n−1$
5. $∑k=48(1−k)2$
6. $∑k=−22(23)k$

### Arithmetic Sequences and Series

Write the first 5 terms of the arithmetic sequence given its first term and common difference. Find a formula for its general term.

1. $a1=6$; $d=5$

2. $a1=5$; $d=7$

3. $a1=5$; $d=−3$

4. $a1=−32$; $d=−12$

5. $a1=−34$; $d=−34$

6. $a1=−3.6$; $d=1.2$

7. $a1=7$; $d=0$

8. $a1=1$; $d=1$

Given the terms of an arithmetic sequence, find a formula for the general term.

1. 10, 20, 30, 40, 50,…

2. −7, −5, −3, −1, 1,…

3. −2, −5, −8, −11, −14,…

4. $−13$, 0, $13$, $23$, 1,…

5. $a4=11$ and $a9=26$

6. $a5=−5$ and $a10=−15$

7. $a6=6$ and $a24=15$

8. $a3=−1.4$ and $a7=1$

Calculate the indicated sum given the formula for the general term of an arithmetic sequence.

1. $an=4n−3$; $S60$

2. $an=−2n+9$; $S35$

3. $an=15n−12$; $S15$

4. $an=−n+14$; $S20$

5. $an=1.8n−4.2$; $S45$

6. $an=−6.5n+3$; $S35$

Evaluate.

1. $∑n=122(7n−5)$
2. $∑n=1100(1−4n)$
3. $∑n=135(23n)$
4. $∑n=130(−14n+1)$
5. $∑n=140(2.3n−1.1)$
6. $∑n=1300n$
7. Find the sum of the first 175 positive odd integers.

8. Find the sum of the first 175 positive even integers.

9. Find all arithmetic means between $a1=23$ and $a5=−23$

10. Find all arithmetic means between $a3=−7$ and $a7=13.$

11. A 5-year salary contract offers $58,200 for the first year with a$4,200 increase each additional year. Determine the total salary obligation over the 5-year period.

12. The first row of seating in a theater consists of 10 seats. Each successive row consists of four more seats than the previous row. If there are 14 rows, how many total seats are there in the theater?

### Geometric Sequences and Series

Write the first 5 terms of the geometric sequence given its first term and common ratio. Find a formula for its general term.

1. $a1=5$; $r=2$

2. $a1=3$; $r=−2$

3. $a1=1$; $r=−32$

4. $a1=−4$; $r=13$

5. $a1=1.2$; $r=0.2$

6. $a1=−5.4$; $r=−0.1$

Given the terms of a geometric sequence, find a formula for the general term.

1. 4, 40, 400,…

2. −6, −30, −150,…

3. 6, $92$, $278$,…

4. 1, $35$, $925$,…

5. $a4=−4$ and $a9=128$

6. $a2=−1$ and $a5=−64$

7. $a2=−52$ and $a5=−62516$

8. $a3=50$ and $a6=−6,250$

9. Find all geometric means between $a1=−1$ and $a4=64.$

10. Find all geometric means between $a3=6$ and $a6=162.$

Calculate the indicated sum given the formula for the general term of a geometric sequence.

1. $an=3(4)n−1$; $S6$

2. $an=−5(3)n−1$; $S10$

3. $an=32(−2)n$; $S14$

4. $an=15(−3)n+1$; $S12$

5. $an=8(12)n+2$; $S8$

6. $an=18(−2)n+2$; $S10$

Evaluate.

1. $∑n=1103(−4)n$
2. $∑n=19−35(−2)n−1$
3. $∑n=1∞−3(23)n$
4. $∑n=1∞12(45)n+1$
5. $∑n=1∞12(−32)n$
6. $∑n=1∞32(−12)n$
7. After the first year of operation, the value of a company van was reported to be $40,000. Because of depreciation, after the second year of operation the van was reported to have a value of$32,000 and then $25,600 after the third year of operation. Write a formula that gives the value of the van after the nth year of operation. Use it to determine the value of the van after 10 years of operation. 8. The number of cells in a culture of bacteria doubles every 6 hours. If 250 cells are initially present, write a sequence that shows the number of cells present after every 6-hour period for one day. Write a formula that gives the number of cells after the nth 6-hour period. 9. A ball bounces back to one-half of the height that it fell from. If dropped from 32 feet, approximate the total distance the ball travels. 10. A structured settlement yields an amount in dollars each year n according to the formula $pn=12,500(0.75)n−1.$ What is the total value of a 10-year settlement? Classify the sequence as arithmetic, geometric, or neither. 1. 4, 9, 14,… 2. 6, 18, 54,… 3. −1, $−12$, 0,… 4. 10, 30, 60,… 5. 0, 1, 8,… 6. −1, $23$, $−49$,… Evaluate. 1. $∑n=14n2$ 2. $∑n=14n3$ 3. $∑n=132(−4n+5)$ 4. $∑n=1∞−2(15)n−1$ 5. $∑n=1813(−3)n$ 6. $∑n=146(14n−12)$ 7. $∑n=122(3−n)$ 8. $∑n=1312n$ 9. $∑n=1283$ 10. $∑n=1303(−1)n−1$ 11. $∑n=1313(−1)n−1$ ### Binomial Theorem Evaluate. 1. $8!$ 2. $11!$ 3. $10!2!6!$ 4. $9!3!8!$ 5. $(n+3)!n!$ 6. $(n−2)!(n+1)!$ Calculate the indicated binomial coefficient. 1. $(74)$ 2. $(83)$ 3. $(105)$ 4. $(1110)$ 5. $(120)$ 6. $(n+1n−1)$ 7. $(nn−2)$ Expand using the binomial theorem. 1. $(x+7)3$ 2. $(x−9)3$ 3. $(2y−3)4$ 4. $(y+4)4$ 5. $(x+2y)5$ 6. $(3x−y)5$ 7. $(u−v)6$ 8. $(u+v)6$ 9. $(5x2+2y2)4$ 10. $(x3−2y2)4$ ### Answers 1. 2, 7, 12, 17, 22; $a30=147$ 2. −10, −20, −30, −40, −50; $a30=−300$ 3. −1, 0, −1, 4, −9; $a30=784$ 4. 3, $52$, $73$, $94$, $115$; $a30=6130$ 5. $x3,2x25,3x37,4x49,5x511$ 6. $2x2,4x4,8x6,16x8,32x10$ 7. 0, 5, 10, 15, 20 8. 0, −3, 9, −30, 99 9. 35 10. −5 11. −18 12. −36 13. $296$ 14. 135 1. 6, 11, 16, 21, 26; $an=5n+1$ 2. 5, 2, −1, −4, −7; $an=8−3n$ 3. $−34$, $−32$, $−94$, −3, $−154$; $an=−34n$ 4. 7, 7, 7, 7, 7; $an=7$ 5. $an=10n$ 6. $an=1−3n$ 7. $an=3n−1$ 8. $an=12n+3$ 9. 7,140 10. $332$ 11. 1,674 12. 1,661 13. 420 14. 1,842 15. 30,625 16. $13$, 0, $−13$ 17.$333,000

1. 5, 10, 20, 40, 80; $an=5(2)n−1$

2. 1, $−32$, $94$, $−278$, $8116$; $an=(−32)n−1$

3. 1.2, 0.24, 0.048, 0.0096, 0.00192; $an=1.2(0.2)n−1$

4. $an=4(10)n−1$

5. $an=6(34)n−1$

6. $a1=12(−2)n−1$

7. $an=−(52)n−1$

8. 4, −16

9. 4,095

10. 16,383

11. $255128$

12. 2,516,580

13. −6

14. No sum

15. $vn=40,000(0.8)n−1$; $v10=5,368.71$

16. 96 feet

17. Arithmetic; $d=5$

18. Arithmetic; $d=12$

19. Neither

20. 30

21. −1,952

22. 1,640

23. −187

24. 84

25. 3

1. 39,916,800

2. 54

3. $1n(n+1)(n−1)$

4. 56

5. 11

6. $n(n+1)2$

7. $x3+21x2+147x+343$

8. $16y4−96y3+216y2−216y+81$

9. $x5+10x4y+40x3y2+80x2y3+80xy4+32y5$

10. $u6−6u5v+15u4v2−20u3v3+15u2v4−6uv5+v6$
11. $625x8+1,000x6y2+600x4y4+160x2y6+16y8$

### Sample Exam

Find the first 5 terms of the sequence.

1. $an=6n−15$

2. $an=5(−4)n−2$

3. $an=n−12n−1$

4. $an=(−1)n−1x2n$

Find the indicated partial sum.

1. $an=(n−1)n2$; $S4$

2. $∑k=15(−1)k2k−2$

Classify the sequence as arithmetic, geometric, or neither.

1. −1, $−32$, −2,…

2. 1, −6, 36,…

3. $38$, $−34$, $32$,…

4. $12$, $14$, $29$,…

Given the terms of an arithmetic sequence, find a formula for the general term.

1. 10, 5, 0, −5, −10,…

2. $a4=−12$ and $a9=2$

Given the terms of a geometric sequence, find a formula for the general term.

1. $−18$, $−12$, −2, −8, −32,…

2. $a3=1$ and $a8=−32$

Calculate the indicated sum.

1. $an=5−n$; $S44$

2. $an=(−2)n+2$; $S12$

3. $∑n=1∞4(−12)n−1$
4. $∑n=1100(2n−32)$

Evaluate.

1. $14!10!6!$

2. $(97)$
3. Determine the sum of the first 48 positive odd integers.

4. The first row of seating in a theater consists of 14 seats. Each successive row consists of two more seats than the previous row. If there are 22 rows, how many total seats are there in the theater?

5. A ball bounces back to one-third of the height that it fell from. If dropped from 27 feet, approximate the total distance the ball travels.

Expand using the binomial theorem.

1. $(x−5y)4$

2. $(3a+b2)5$

1. −9, −3, 3, 9, 15

2. 0, $13$, $25$, $37$, $49$

3. 70

4. Arithmetic

5. Geometric

6. $an=15−5n$

7. $an=−18(4)n−1$

8. −770

9. $83$

10. $1,00130$

11. 2,304

12. 54 feet

13. $243a5+405a4b2+270a3b4+90a2b6+15ab8+b10$