

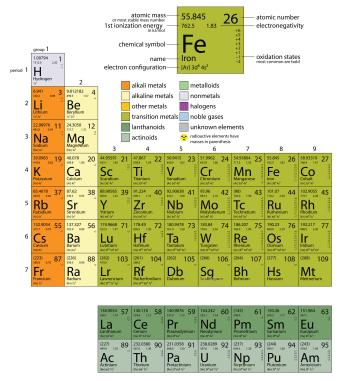
This is "Appendix: Periodic Table of the Elements", appendix 1 from the book <u>Introduction to Chemistry: General, Organic, and Biological (index.html)</u> (v. 1.0).

This book is licensed under a <u>Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/3.0/)</u> license. See the license for more details, but that basically means you can share this book as long as you credit the author (but see below), don't make money from it, and do make it available to everyone else under the same terms.

This content was accessible as of December 29, 2012, and it was downloaded then by <u>Andy Schmitz</u> (http://lardbucket.org) in an effort to preserve the availability of this book.

Normally, the author and publisher would be credited here. However, the publisher has asked for the customary Creative Commons attribution to the original publisher, authors, title, and book URI to be removed. Additionally, per the publisher's request, their name has been removed in some passages. More information is available on this project's attribution page (http://2012books.lardbucket.org/attribution.html?utm_source=header).

For more information on the source of this book, or why it is available for free, please see <u>the project's home page (http://2012books.lardbucket.org/)</u>. You can browse or download additional books there.


Chapter 21

Appendix: Periodic Table of the Elements

In this chapter, we present some data on the chemical elements. The periodic table lists all the known chemical elements, arranged by atomic number (that is, the number of protons in the nucleus). The periodic table is arguably the best tool in all of science; no other branch of science can summarize its fundamental constituents in such a concise and useful way. Many of the physical and chemical properties of the elements are either known or understood based on their positions on the periodic table. Periodic tables are available with a variety of chemical and physical properties listed in each element's box. What follows here is a relatively simple version. The Internet is a great place to find periodic tables that contain additional information.

One item on most periodic tables is the atomic mass of each element. For many applications, only one or two decimal places are necessary for the atomic mass. However, some applications (especially nuclear chemistry; see Chemistry") require more decimal places. The atomic masses in <a href="Table 21.1" The Basics of the Elements of the Periodic Table" represent the number of decimal places recognized by the International Union of Pure and Applied Chemistry, the worldwide body that develops standards for chemistry. The atomic masses of some elements are known very precisely, to a large number of decimal places. The atomic masses of other elements, especially radioactive elements, are not known as precisely. Some elements, such as lithium, can have varying atomic masses depending on how their isotopes are isolated.

The web offers many interactive periodic table resources. For example, see http://www.ptable.com.

The properties listed in each box are introduced throughout the text. Atomic masses may vary by source.

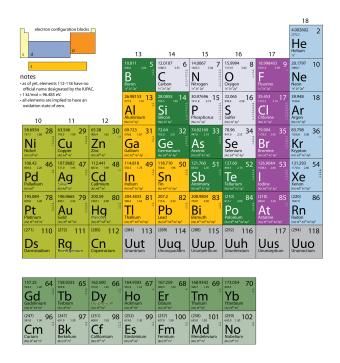


Table 21.1 The Basics of the Elements of the Periodic Table

Name	Atomic Symbol	Atomic Number	Atomic Mass	Footnotes
actinium*	Ac	89		
aluminum	Al	13	26.9815386(8)	
americium*	Am	95		
antimony	Sb	51	121.760(1)	g
argon	Ar	18	39.948(1)	g, r
arsenic	As	33	74.92160(2)	
astatine*	At	85		
barium	Ва	56	137.327(7)	
berkelium*	Bk	97		
beryllium	Ве	4	9.012182(3)	
bismuth	Bi	83	208.98040(1)	
bohrium*	Bh	107		
boron	В	5	10.811(7)	g, m, r
bromine	Br	35	79.904(1)	
cadmium	Cd	48	112.411(8)	g

^{*}Element has no stable nuclides. However, three such elements (Th, Pa, and U) have a characteristic terrestrial isotopic composition, and for these an atomic mass is tabulated.

g Geological specimens are known in which the element has an isotopic composition outside the limits for normal material. The difference between the atomic mass of the element in such specimens and that given in the table may exceed the stated uncertainty.

m Modified isotopic compositions may be found in commercially available material because it has been subjected to an undisclosed or inadvertent isotopic fractionation. Substantial deviations in the atomic mass of the element from that given in the table can occur.

Name	Atomic Symbol	Atomic Number	Atomic Mass	Footnotes
caesium (cesium)	Cs	55	132.9054519(2)	
calcium	Ca	20	40.078(4)	g
californium*	Cf	98		
carbon	С	6	12.0107(8)	g, r
cerium	Ce	58	140.116(1)	g
chlorine	Cl	17	35.453(2)	g, m, r
chromium	Cr	24	51.9961(6)	
cobalt	Со	27	58.933195(5)	
copernicium*	Cn	112		
copper	Cu	29	63.546(3)	r
curium*	Cm	96		
darmstadtium*	Ds	110		
dubnium*	Db	105		
dysprosium	Dy	66	162.500(1)	g
einsteinium*	Es	99		
erbium	Er	68	167.259(3)	g
europium	Eu	63	151.964(1)	g

^{*}Element has no stable nuclides. However, three such elements (Th, Pa, and U) have a characteristic terrestrial isotopic composition, and for these an atomic mass is tabulated.

g Geological specimens are known in which the element has an isotopic composition outside the limits for normal material. The difference between the atomic mass of the element in such specimens and that given in the table may exceed the stated uncertainty.

m Modified isotopic compositions may be found in commercially available material because it has been subjected to an undisclosed or inadvertent isotopic fractionation. Substantial deviations in the atomic mass of the element from that given in the table can occur.

Name	Atomic Symbol	Atomic Number	Atomic Mass	Footnotes
fermium*	Fm	100		
fluorine	F	9	18.9984032(5)	
francium*	Fr	87		
gadolinium	Gd	64	157.25(3)	g
gallium	Ga	31	69.723(1)	
germanium	Ge	32	72.64(1)	
gold	Au	79	196.966569(4)	
hafnium	Hf	72	178.49(2)	
hassium*	Hs	108		
helium	Не	2	4.002602(2)	g, r
holmium	Но	67	164.93032(2)	
hydrogen	Н	1	1.00794(7)	g, m, r
indium	In	49	114.818(3)	
iodine	I	53	126.90447(3)	
iridium	Ir	77	192.217(3)	
iron	Fe	26	55.845(2)	
krypton	Kr	36	83.798(2)	g, m

^{*}Element has no stable nuclides. However, three such elements (Th, Pa, and U) have a characteristic terrestrial isotopic composition, and for these an atomic mass is tabulated.

g Geological specimens are known in which the element has an isotopic composition outside the limits for normal material. The difference between the atomic mass of the element in such specimens and that given in the table may exceed the stated uncertainty.

m Modified isotopic compositions may be found in commercially available material because it has been subjected to an undisclosed or inadvertent isotopic fractionation. Substantial deviations in the atomic mass of the element from that given in the table can occur.

Name	Atomic Symbol	Atomic Number	Atomic Mass	Footnotes
lanthanum	La	57	138.90547(7)	g
lawrencium*	Lr	103		
lead	Pb	82	207.2(1)	g, r
lithium	Li	3	[6.941(2)]†	g, m, r
lutetium	Lu	71	174.967(1)	g
magnesium	Mg	12	24.3050(6)	
manganese	Mn	25	54.938045(5)	
meitnerium*	Mt	109		
mendelevium*	Md	101		
mercury	Нд	80	200.59(2)	
molybdenum	Мо	42	95.94(2)	g
neodymium	Nd	60	144.242(3)	g
neon	Ne	10	20.1797(6)	g, m
neptunium*	Np	93		
nickel	Ni	28	58.6934(2)	
niobium	Nb	41	92.90638(2)	
nitrogen	N	7	14.0067(2)	g, r

^{*}Element has no stable nuclides. However, three such elements (Th, Pa, and U) have a characteristic terrestrial isotopic composition, and for these an atomic mass is tabulated.

g Geological specimens are known in which the element has an isotopic composition outside the limits for normal material. The difference between the atomic mass of the element in such specimens and that given in the table may exceed the stated uncertainty.

m Modified isotopic compositions may be found in commercially available material because it has been subjected to an undisclosed or inadvertent isotopic fractionation. Substantial deviations in the atomic mass of the element from that given in the table can occur.

Name	Atomic Symbol	Atomic Number	Atomic Mass	Footnotes
nobelium*	No	102		
osmium	Os	76	190.23(3)	g
oxygen	0	8	15.9994(3)	g, r
palladium	Pd	46	106.42(1)	g
phosphorus	Р	15	30.973762(2)	
platinum	Pt	78	195.084(9)	
plutonium*	Pu	94		
polonium*	Ро	84		
potassium	K	19	39.0983(1)	
praseodymium	Pr	59	140.90765(2)	
promethium*	Pm	61		
protactinium*	Pa	91	231.03588(2)	
radium*	Ra	88		
radon*	Rn	86		
roentgenium*	Rg	111		
rhenium	Re	75	186.207(1)	
rhodium	Rh	45	102.90550(2)	

^{*}Element has no stable nuclides. However, three such elements (Th, Pa, and U) have a characteristic terrestrial isotopic composition, and for these an atomic mass is tabulated.

g Geological specimens are known in which the element has an isotopic composition outside the limits for normal material. The difference between the atomic mass of the element in such specimens and that given in the table may exceed the stated uncertainty.

m Modified isotopic compositions may be found in commercially available material because it has been subjected to an undisclosed or inadvertent isotopic fractionation. Substantial deviations in the atomic mass of the element from that given in the table can occur.

Name	Atomic Symbol	Atomic Number	Atomic Mass	Footnotes
rubidium	Rb	37	85.4678(3)	g
ruthenium	Ru	44	101.07(2)	g
rutherfordium*	Rf	104		
samarium	Sm	62	150.36(2)	g
scandium	Sc	21	44.955912(6)	
seaborgium*	Sg	106		
selenium	Se	34	78.96(3)	r
silicon	Si	14	28.0855(3)	r
silver	Ag	47	107.8682(2)	g
sodium	Na	11	22.98976928(2)	
strontium	Sr	38	87.62(1)	g, r
sulfur	S	16	32.065(5)	g, r
tantalum	Та	73	180.94788(2)	
technetium*	Тс	43		
tellurium	Те	52	127.60(3)	g
terbium	ТЬ	65	158.92535(2)	
thallium	Tl	81	204.3833(2)	

^{*}Element has no stable nuclides. However, three such elements (Th, Pa, and U) have a characteristic terrestrial isotopic composition, and for these an atomic mass is tabulated.

g Geological specimens are known in which the element has an isotopic composition outside the limits for normal material. The difference between the atomic mass of the element in such specimens and that given in the table may exceed the stated uncertainty.

m Modified isotopic compositions may be found in commercially available material because it has been subjected to an undisclosed or inadvertent isotopic fractionation. Substantial deviations in the atomic mass of the element from that given in the table can occur.

Name	Atomic Symbol	Atomic Number	Atomic Mass	Footnotes
thorium*	Th	90	232.03806(2)	g
thulium	Tm	69	168.93421(2)	
tin	Sn	50	118.710(7)	g
titanium	Ti	22	47.867(1)	
tungsten	W	74	183.84(1)	
ununhexium*	Uuh	116		
ununoctium*	Uuo	118		
ununpentium*	Uup	115		
ununquadium*	Uuq	114		
ununtrium*	Uut	113		
uranium*	U	92	238.02891(3)	g, m
vanadium	V	23	50.9415(1)	
xenon	Xe	54	131.293(6)	g, m
ytterbium	Yb	70	173.04(3)	g
yttrium	Y	39	88.90585(2)	
zinc	Zn	30	65.409(4)	
zirconium	Zr	40	91.224(2)	g

^{*}Element has no stable nuclides. However, three such elements (Th, Pa, and U) have a characteristic terrestrial isotopic composition, and for these an atomic mass is tabulated.

g Geological specimens are known in which the element has an isotopic composition outside the limits for normal material. The difference between the atomic mass of the element in such specimens and that given in the table may exceed the stated uncertainty.

m Modified isotopic compositions may be found in commercially available material because it has been subjected to an undisclosed or inadvertent isotopic fractionation. Substantial deviations in the atomic mass of the element from that given in the table can occur.

Chapter 21 Appendix: Periodic Table of the Elements

Source: *Pure and Applied Chemistry* 78, no. 11 (2005): 2051–66. © IUPAC (International Union of Pure and Applied Chemistry).