
This is “Understanding Software: A Primer for Managers”, chapter 9 from the book Getting the Most Out of
Information Systems: A Manager's Guide (index.html) (v. 1.1).

This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/
3.0/) license. See the license for more details, but that basically means you can share this book as long as you
credit the author (but see below), don't make money from it, and do make it available to everyone else under the
same terms.

This content was accessible as of December 29, 2012, and it was downloaded then by Andy Schmitz
(http://lardbucket.org) in an effort to preserve the availability of this book.

Normally, the author and publisher would be credited here. However, the publisher has asked for the customary
Creative Commons attribution to the original publisher, authors, title, and book URI to be removed. Additionally,
per the publisher's request, their name has been removed in some passages. More information is available on this
project's attribution page (http://2012books.lardbucket.org/attribution.html?utm_source=header).

For more information on the source of this book, or why it is available for free, please see the project's home page
(http://2012books.lardbucket.org/). You can browse or download additional books there.

i

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

index.html
index.html
http://creativecommons.org/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://lardbucket.org
http://lardbucket.org
http://2012books.lardbucket.org/attribution.html?utm_source=header
http://2012books.lardbucket.org/
http://2012books.lardbucket.org/

Chapter 9

Understanding Software: A Primer for Managers

310

9.1 Introduction

LEARNING OBJECTIVES

After studying this section you should be able to do the following:

1. Recognize the importance of software and its implications for the firm
and strategic decision making.

2. Understand that software is everywhere; not just in computers, but also
cell phones, cars, cameras, and many other technologies.

3. Know what software is and be able to differentiate it from hardware.
4. List the major classifications of software and give examples of each.

We know computing hardware1 is getting faster and cheaper, creating all sorts of
exciting and disruptive opportunities for the savvy manager. But what’s really
going on inside the box? It’s software2 that makes the magic of computing happen.
Without software, your PC would be a heap of silicon wrapped in wires encased in
plastic and metal. But it’s the instructions—the software code—that enable a
computer to do something wonderful, driving the limitless possibilities of
information technology.

Software is everywhere. An inexpensive cell phone has about one million lines of
code, while the average car contains nearly one hundred million.R. Charette, “Why
Software Fails,” IEEE Spectrum, September 2005. In this chapter we’ll take a peek
inside the chips to understand what software is. A lot of terms are associated with
software: operating systems, applications, enterprise software, distributed systems,
and more. We’ll define these terms up front, and put them in a managerial context.
A follow-up chapter, Chapter 10 "Software in Flux: Partly Cloudy and Sometimes
Free", will focus on changes impacting the software business, including open source
software, software as a service (SaaS), and cloud computing. These changes are
creating an environment radically different from the software industry that existed
in prior decades—confronting managers with a whole new set of opportunities and
challenges.

Managers who understand software can better understand the possibilities and
impact of technology. They can make better decisions regarding the strategic value
of IT and the potential for technology-driven savings. They can appreciate the
challenges, costs, security vulnerabilities, legal and compliance issues, and
limitations involved in developing and deploying technology solutions. In the next

1. The physical components of
information technology, which
can include the computer itself
plus peripherals such as
storage devices, input devices
like the mouse and keyboard,
output devices like monitors
and printers, networking
equipment, and so on.

2. A computer program or a
collection of programs. It is a
precise set of instructions that
tells hardware what to do.

Chapter 9 Understanding Software: A Primer for Managers

311

fwk-38086-ch10#fwk-38086-ch10
fwk-38086-ch10#fwk-38086-ch10

two chapters we will closely examine the software industry and discuss trends,
developments and economics—all of which influence decisions managers make
about products to select, firms to partner with, and firms to invest in.

What Is Software?

When we refer to computer hardware (sometimes just hardware), we’re talking
about the physical components of information technology—the equipment that you
can physically touch, including computers, storage devices, networking equipment,
and other peripherals.

Software refers to a computer program or collection of programs—sets of
instructions that tell the hardware what to do. Software gets your computer to
behave like a Web browser or word processor, makes your iPod play music and
video, and enables your bank’s ATM to spit out cash.

It’s when we start to talk about the categories of software that most people’s eyes
glaze over. To most folks, software is a big, incomprehensible alphabet soup of
acronyms and geeky phrases: OS, VB, SAP, SQL, to name just a few.

Don’t be intimidated. The basics are actually pretty easy to understand. But it’s not
soup; it’s more of a layer cake. Think about computer hardware as being at the
bottom of the layer cake. The next layer is the operating system3, the collection of
programs that control the hardware. Windows, Mac OS X, and Linux are operating
systems. On top of that layer are applications4—these can range from end-user
programs like those in Office, to the complex set of programs that manage a
business’s inventory, payroll, and accounting. At the top of the cake are users.

3. The software that controls the
computer hardware and
establishes standards for
developing and executing
applications.

4. Includes desktop applications,
enterprise software, utilities,
and other programs that
perform specific tasks for users
and organizations.

Chapter 9 Understanding Software: A Primer for Managers

9.1 Introduction 312

Figure 9.1 The Hardware/Software Layer Cake

The flexibility of these layers gives computers the customization options that
managers and businesses demand. Understanding how the layers relate to each
other helps you make better decisions on what options are important to your
unique business needs, can influence what you buy, and may have implications for
everything from competitiveness to cost overruns to security breaches. What
follows is a manager’s guide to the main software categories with an emphasis on
why each is important.

KEY TAKEAWAYS

• Software refers to a computer program or collection of programs. It
enables computing devices to perform tasks.

• You can think of software as being part of a layer cake, with hardware at
the bottom; the operating system controlling the hardware and
establishing standards, the applications executing one layer up, and the
users at the top.

• How these layers relate to one another has managerial implications in
many areas, including the flexibility in meeting business demand, costs,
legal issues and security.

• Software is everywhere—not just in computers, but also in cell phones,
cars, cameras, and many other technologies.

Chapter 9 Understanding Software: A Primer for Managers

9.1 Introduction 313

QUESTIONS AND EXERCISES

1. Explain the difference between hardware and software.
2. Why should a manager care about software and how software works?

What critical organizational and competitive factors can software
influence?

3. What role has software played in your decision to select certain
products? Has this influenced why you favored one product or service
over another?

4. Find the Fortune 500 list online. Which firm is the highest ranked
software firm? While the Fortune 500 ranks firms according to revenue,
what’s this firm’s profitability rank? What does this discrepancy tell you
about the economics of software development? Why is the software
business so attractive to entrepreneurs?

5. Refer to earlier chapters (and particularly to Chapter 2 "Strategy and
Technology: Concepts and Frameworks for Understanding What
Separates Winners from Losers"): Which resources for competitive
advantage might top software firms be able to leverage to ensure their
continued dominance? Give examples of firms that have leveraged these
assets, and why they are so strong.

Chapter 9 Understanding Software: A Primer for Managers

9.1 Introduction 314

fwk-38086-ch02#fwk-38086-ch02
fwk-38086-ch02#fwk-38086-ch02
fwk-38086-ch02#fwk-38086-ch02

9.2 Operating Systems

LEARNING OBJECTIVES

After studying this section you should be able to do the following:

1. Understand what an operating system is and why computing devices
require operating systems.

2. Appreciate how embedded systems extend Moore’s Law, allowing firms
to create “smarter” products and services

Computing hardware needs to be controlled, and that’s the role of the operating
system. The operating system (sometimes called the “OS”) provides a common set
of controls for managing computer hardware, making it easier for users to interact
with computers and for programmers to write application software. Just about
every computing device has an operating system—desktops and laptops, enterprise-
class server computers, your mobile phone. Even specialty devices like iPods, video
game consoles, and television set top boxes run some form of OS.

Some firms, like Apple and Nintendo, develop their own proprietary OS for their
own hardware. Microsoft sells operating systems to everyone from Dell to the ATM
manufacturer Diebold (listen for the familiar Windows error beep on some cash
machines). And there are a host of specialty firms, such as Wind River (purchased
by Intel), that help firms develop operating systems for all sorts of devices that
don’t necessarily look like a PC, including cars, video editing systems, and fighter
jet control panels.

Anyone who has used both a PC and a Mac and has noticed differences across these
platforms can get a sense of the breadth of what an operating system does. Even for
programs that are otherwise identical for these two systems (like the Firefox
browser), subtitle differences are visible. Screen elements like menus, scroll bars,
and window borders look different on the Mac than they do in Windows. So do the
dialogue boxes that show up when you print or save.

These items look and behave differently because each of these functions touches
the hardware, and the team that developed Microsoft Windows created a system
distinctly different from their Macintosh counterparts at Apple. Graphical user
interface (UI)5 items like scroll bars and menus are displayed on the hardware of
the computer display. Files are saved to the hardware of a hard drive or other

5. The mechanism through which
users interact with a
computing device. The UI
includes elements of the
graphical user interface (or
GUI, pronounced “gooey”), such
as windows, scroll bars,
buttons, menus, and dialogue
boxes; and can also include
other forms of interaction,
such as touch screens, motion
sensing controllers, or tactile
devices used by the visually
impaired.

Chapter 9 Understanding Software: A Primer for Managers

315

storage device. Most operating systems also include control panels, desktop file
management, and other support programs to work directly with hardware elements
like storage devices, displays, printers, and networking equipment. The Macintosh
Finder and the Windows Explorer are examples of components of these operating
systems. The consistent look, feel, and functionality that operating systems enforce
across various programs help make it easier for users to learn new software, which
reduces training costs and operator error. See Figure 9.2 for similarities and
differences.

Figure 9.2

Differences between the Windows and Mac operating systems are evident throughout the user interface,
particularly when a program interacts with hardware.

Operating systems are also designed to give programmers a common set of
commands to consistently interact with the hardware. These commands make a
programmer’s job easier by reducing program complexity and making it faster to
write software while minimizing the possibility of errors in code. Consider what an
OS does for the Wii game developer. Nintendo’s Wii OS provides Wii programmers
with a set of common standards to use to access the Wiimote, play sounds, draw
graphics, save files, and more. Without this, games would be a lot more difficult to
write, they’d likely look differently, be less reliable, would cost more, and there
would be fewer titles available.

Chapter 9 Understanding Software: A Primer for Managers

9.2 Operating Systems 316

Similarly, when Apple provided developers with a common set of robust, easy-to-
use standards for the iPhone and (via the App Store) an easy way for users to install
these applications on top of the iPhone/iPod touch OS, software development
boomed, and Apple became hands-down the most versatile mobile computing
device available.The iPhone and iPod touch OS is derived from Apple’s Mac OS X
operating system. In Apple’s case, some fifty thousand apps became available through
the App Store in less than a year. A good OS and software development platform can
catalyze network effects (see Chapter 6 "Understanding Network Effects"). While
the OS seems geeky, its effective design has very strategic business implications!

Figure 9.3 Operating System Market Share for Desktop, Server, and Mobile Phones

Source: Data provided by HitsLink Market Share, Forrester Research, IDC, and AdMob.Data for desktop, server, and
mobile phones from 2009, 2008, and 2009, respectively. Desktop operating system data from Market Share,
“Operating System Market Share,” 2009, http://marketshare.hitslink.com/operating-system-market-
share.aspx?qprid=10 mobile phone data from AdMob Mobile Metrics Report, 2009, http://metrics.admob.com.

Chapter 9 Understanding Software: A Primer for Managers

9.2 Operating Systems 317

fwk-38086-ch05#fwk-38086-ch05
http://marketshare.hitslink.com/operating-system-market-share.aspx?qprid=10
http://marketshare.hitslink.com/operating-system-market-share.aspx?qprid=10
http://metrics.admob.com

Firmware and Embedded Systems

Most personal computers have an operating system installed on their hard
drives. This system allows the OS to be replaced or upgraded easily. But many
smaller, special-purpose computing devices have their operating systems
installed on nonvolatile memory, often on read-only memory (ROM) chips.
Control programs stored on chips are sometimes referred to as firmware6. The
OS in an iPod, mobile phone, or your TV’s set-top box is most likely stored as
firmware. Your PC also has a tiny bit of firmware that allows it to do very basic
functions like start-up (boot) and begin loading its operating system from disk.

Another term you might hear is embedded systems7. As computing gets
cheaper, special-purpose technology is increasingly becoming embedded into
all sorts of devices like cars, picture frames, aircraft engines, photocopiers, and
heating and air conditioning systems. The software programs that make up
embedded systems are often stored as firmware too.

Moore’s Law (see Chapter 5 "Moore’s Law: Fast, Cheap Computing and What It
Means for the Manager") enables embedded systems, and these systems can
create real strategic value. The Otis Elevator Company, a division of United
Technologies, uses embedded systems in its products to warn its service centers
when the firm’s elevators, escalators, and moving walkways need maintenance
or repair. This warning provides Otis with several key benefits:

1. Since products automatically contact Otis when they need
attention, these systems generate a lucrative service business for
the firm and make it more difficult for third parties to offer a
competing business servicing Otis products.

2. Products contact service technicians to perform maintenance
based on exact needs (e.g., lubricant is low, or a part has been used
enough to be replaced) rather than guessed schedules, which
makes service more cost-effective, products less likely to break
down, and customers happier.

3. Any product failures are immediately detected, with embedded
systems typically dispatching technicians before a client’s phone
call.

4. The data is fed back to Otis’s R&D group, providing information on
reliability and failure so that engineers can use this info to design
better products.

6. Software stored on nonvolatile
memory chips (as opposed to
being stored on devices such as
hard drives or removable
discs). Despite the seemingly
permanent nature of firmware,
many products allow for
firmware to be upgraded
online or by connecting to
another device.

7. Special-purpose software
designed and included inside
physical products (often on
firmware). Embedded systems
help make devices “smarter,”
sharing usage information,
helping diagnose problems,
indicating maintenance
schedules, providing alerts, or
enabling devices to take orders
from other systems.

Chapter 9 Understanding Software: A Primer for Managers

9.2 Operating Systems 318

fwk-38086-ch04#fwk-38086-ch04
fwk-38086-ch04#fwk-38086-ch04

Collectively, software embedded on tiny chips yields very big benefits, for years
helping Otis remain at the top of its industry.

KEY TAKEAWAYS

• The operating system (OS) controls a computer’s hardware and provides
a common set of commands for writing programs.

• Most computing devices (enterprise-class server computers, PCs,
phones, set-top boxes, video games, cars, the Mars Rover) have an
operating system.

• Some products use operating systems provided by commercial firms,
while others develop their own operating system. Others may leverage
open source alternatives (see Chapter 10 "Software in Flux: Partly
Cloudy and Sometimes Free").

• Embedded systems are special-purpose computer systems designed to
perform one or a few dedicated functions, and are frequently built into
conventional products like cars, air conditioners, and elevators.

• Embedded systems can make products and services more efficient, more
reliable, more functional, and can enable entire new businesses and
create or reinforce resources for competitive advantage.

Chapter 9 Understanding Software: A Primer for Managers

9.2 Operating Systems 319

fwk-38086-ch10#fwk-38086-ch10
fwk-38086-ch10#fwk-38086-ch10

QUESTIONS AND EXERCISES

1. What does an operating system do? Why do you need an operating
system? How do operating systems make a programmer’s job easier?
How do operating systems make life easier for end users?

2. How has the market for desktop, server, and mobile operating systems
changed in recent years? Do certain products seem to be gaining
traction? Why do you think this is the case?

3. What kinds of operating systems are used in the devices that you own?
On your personal computer? Your mobile phone? The set-top box on top
of your television? Are there other operating systems that you come
into contact with? If you can’t tell which operating system is in each of
these devices, see if you can search the Internet to find out.

4. For your list in the prior question (and to the extent that you can),
diagram the hardware/software “layer cake” for these devices.

5. For this same list, do you think each device’s manufacturer wrote all of
the software that you use on these devices? Can you add or modify
software to all of these devices? Why or why not? What would the
implications be for cost, security, complexity, reliability, updates and
upgrades, and the appeal of each device?

6. Some ATM machines use Windows. Why would an ATM manufacturer
choose to build its systems owing Windows? Why might it want to avoid
this? Are there other non-PC devices you’ve encountered that were
running some form of Windows?

7. What are embedded systems? When might firms want to install software
on chips instead of on a hard drive?

8. It’s important to understand how technology impacts a firm’s strategy
and competitive environment. Consider the description of Otis
elevator’s use of embedded systems. Which parts of the value chain does
this impact? How? Consider the “five forces”: How does the system
impact the firm’s competitive environment? Are these systems a source
of competitive advantage? If not, explain why not? If they are, what
kinds of resources for competitive advantage can these kinds of
embedded systems create?

9. Can you think of other firms that can or do leverage embedded systems?
Provide examples and list the kinds of benefits these might offer firms
and consumers.

10. Research the Americans with Disabilities Act of 1990 (or investigate if
your nation has a similar law), and the implications of this legislation for
software developers and Web site operators. Have firms been
successfully sued when their software or Web sites could not be accessed
by users with physical challenges? What sorts of issues should

Chapter 9 Understanding Software: A Primer for Managers

9.2 Operating Systems 320

developers consider when making their products more accessible? What
practices might they avoid?

Chapter 9 Understanding Software: A Primer for Managers

9.2 Operating Systems 321

9.3 Application Software

LEARNING OBJECTIVES

After studying this section you should be able to do the following:

1. Appreciate the difference between desktop and enterprise software.
2. List the categories of enterprise software.
3. Understand what an ERP (enterprise resource planning) software

package is.
4. Recognize the relationship of the DBMS (database system) to the other

enterprise software systems.
5. Recognize both the risks and rewards of installing packaged enterprise

systems.

Operating systems are designed to create a platform8 so that programmers can
write additional applications, allowing the computer to do even more useful things.
While operating systems control the hardware, application software (sometimes
referred to as software applications, applications, or even just apps) perform the work
that users and firms are directly interested in accomplishing. Think of applications
as the place where the users or organization’s real work gets done. As we learned in
Chapter 6 "Understanding Network Effects", the more application software that is
available for a platform (the more games for a video game console, the more apps
for your phone), the more valuable it potentially becomes.

Desktop software9 refers to applications installed on a personal computer—your
browser, your Office suite (e.g., word processor, spreadsheet, presentation
software), photo editors, and computer games are all desktop software. Enterprise
software10 refers to applications that address the needs of multiple, simultaneous
users in an organization or work group. Most companies run various forms of
enterprise software programs to keep track of their inventory, record sales, manage
payments to suppliers, cut employee paychecks, and handle other functions.

Some firms write their own enterprise software from scratch, but this can be time
consuming and costly. Since many firms have similar procedures for accounting,
finance, inventory management, and human resource functions, it often makes
sense to buy a software package11 (a software product offered commercially by a
third party) to support some of these functions. So-called enterprise resource
planning (ERP)12 software packages serve precisely this purpose. In the way that

8. Products and services that
allow for the development and
integration of software
products and other
complementary goods.
Windows, the iPhone, the Wii,
and the standards that allow
users to create Facebook apps
are all platforms.

9. Applications installed on a
personal computer, typically
supporting tasks performed by
a single user.

10. Applications that address the
needs of multiple users
throughout an organization or
work group.

11. A software product offered
commercially by a third party.

12. A software package that
integrates the many functions
(accounting, finance, inventory
management, human
resources, etc.) of a business.

Chapter 9 Understanding Software: A Primer for Managers

322

fwk-38086-ch05#fwk-38086-ch05

Microsoft can sell you a suite of desktop software programs that work together,
many companies sell ERP software that coordinates and integrates many of the
functions of a business. The leading ERP vendors include the firm’s SAP and Oracle,
although there are many firms that sell ERP software. A company doesn’t have to
install all of the modules of an ERP suite, but it might add functions over time—for
example, to plug in an accounting program that is able to read data from the firm’s
previously installed inventory management system. And although a bit more of a
challenge to integrate, a firm can also mix and match components, linking software
the firm has written with modules purchased from different enterprise software
vendors.

Figure 9.4 ERP in ActionAdapted from G. Edmondson, “Silicon Valley on the Rhine,” BusinessWeek
International, November 3, 1997.

An ERP system with multiple modules installed can touch many functions of the
business:

• Sales—A sales rep from Vermont-based SnowboardCo. takes an order
for five thousand boards from a French sporting goods chain. The
system can verify credit history, apply discounts, calculate price (in
euros), and print the order in French.

• Inventory—While the sales rep is on the phone with his French
customer, the system immediately checks product availability,
signaling that one thousand boards are ready to be shipped from the
firm’s Burlington warehouse, the other four thousand need to be

Chapter 9 Understanding Software: A Primer for Managers

9.3 Application Software 323

manufactured and can be delivered in two weeks from the firm’s
manufacturing facility in Guangzhou.

• Manufacturing—When the customer confirms the order, the system
notifies the Guangzhou factory to ramp up production for the model
ordered.

• Human Resources—High demand across this week’s orders triggers a
notice to the Guangzhou hiring manager, notifying her that the firm’s
products are a hit and that the flood of orders coming in globally mean
her factory will have to hire five more workers to keep up.

• Purchasing—The system keeps track of raw material inventories, too.
New orders trigger an automatic order with SnowboardCo’s suppliers,
so that raw materials are on hand to meet demand.

• Order Tracking—The French customer can log in to track her
SnowboardCo order. The system shows her other products that are
available, using this as an opportunity to cross-sell additional products.

• Decision Support—Management sees the firm’s European business is
booming and plans a marketing blitz for the continent, targeting board
models and styles that seem to sell better for the Alps crowd than in
the U.S. market.

Other categories of enterprise software that managers are likely to encounter
include the following:

• customer relationship management (CRM)13 systems used to support
customer-related sales and marketing activities

• supply chain management (SCM)14 systems that can help a firm
manage aspects of its value chain, from the flow of raw materials into
the firm through delivery of finished products and services at the
point-of-consumption

• business intelligence (BI) systems15, which use data created by other
systems to provide reporting and analysis for organizational decision
making

Major ERP vendors are now providing products that extend into these and other
categories of enterprise application software, as well.

Most enterprise software works in conjunction with a database management
system (DBMS)16, sometimes referred to as a “database system.” The database
system stores and retrieves the data that an application creates and uses. Think of
this as another additional layer in our cake analogy. Although the DBMS is itself
considered an application, it’s often useful to think of a firm’s database systems as
sitting above the operating system, but under the enterprise applications. Many

13. Systems used to support
customer-related sales and
marketing activities.

14. Systems that can help a firm
manage aspects of its value
chain, from the flow of raw
materials into the firm,
through delivery of finished
products and services at the
point-of-consumption.

15. Systems that use data created
by other systems to provide
reporting and analysis for
organizational decision
making.

16. Sometimes referred to as
database software; software for
creating, maintaining, and
manipulating data.

Chapter 9 Understanding Software: A Primer for Managers

9.3 Application Software 324

ERP systems and enterprise software programs are configured to share the same
database system so that an organization’s different programs can use a common,
shared set of data. This system can be hugely valuable for a company’s efficiency.
For example, this could allow a separate set of programs that manage an inventory
and point-of-sale system to update a single set of data that tells how many products
a firm has to sell and how many it has already sold—information that would also be
used by the firm’s accounting and finance systems to create reports showing the
firm’s sales and profits.

Firms that don’t have common database systems with consistent formats across
their enterprise often struggle to efficiently manage their value chain. Common
procedures and data formats created by packaged ERP systems and other categories
of enterprise software also make it easier for firms to use software to coordinate
programs between organizations. This coordination can lead to even more value
chain efficiencies. Sell a product? Deduct it from your inventory. When inventory
levels get too low, have your computer systems send a message to your supplier’s
systems so that they can automatically build and ship replacement product to your
firm. In many cases these messages are sent without any human interaction,
reducing time and errors. And common database systems also facilitate the use of BI
systems that provide critical operational and competitive knowledge and empower
decision making. For more on CRM and BI systems, and the empowering role of
data, see Chapter 11 "The Data Asset: Databases, Business Intelligence, and
Competitive Advantage".

Figure 9.5

An organization’s database management system can be set up to work with several applications both within and
outside the firm.

Chapter 9 Understanding Software: A Primer for Managers

9.3 Application Software 325

fwk-38086-ch11#fwk-38086-ch11
fwk-38086-ch11#fwk-38086-ch11

The Rewards and Risks of Packaged Enterprise Systems

When set up properly, enterprise systems can save millions of dollars and
turbocharge organizations. For example, the CIO of office equipment maker
Steelcase credited the firm’s ERP with an eighty-million-dollar reduction in
operating expenses saved from eliminating redundant processes and making
data more usable. The CIO of Colgate Palmolive also praised their ERP, saying,
“The day we turned the switch on, we dropped two days out of our order-to-
delivery cycle.”A. Robinson and D. Dilts, “OR and ERP,” ORMS Today, June 1999.
Packaged enterprise systems can streamline processes, make data more usable,
and ease the linking of systems with software across the firm and with key
business partners. Plus, the software that makes up these systems is often
debugged, tested, and documented with an industrial rigor that may be difficult
to match with proprietary software developed in-house.

But for all the promise of packaged solutions for standard business functions,
enterprise software installations have proven difficult. Standardizing business
processes in software that others can buy means that those functions are easy
for competitors to match, and the vision of a single monolithic system that
delivers up wondrous efficiencies has been difficult for many to achieve. The
average large company spends roughly $15 million on ERP software, with some
installations running into the hundreds of millions of dollars.C. Rettig, “The
Trouble with Enterprise Software,” MIT Sloan Management Review 49, no. 1
(2007): 21–27. And many of these efforts have failed disastrously.

FoxMeyer was once a six-billion-dollar drug distributor, but a failed ERP
installation led to a series of losses that bankrupted the firm. The collapse was
so rapid and so complete that just a year after launching the system, the carcass
of what remained of the firm was sold to a rival for less than $80 million.
Hershey Foods blamed a $466 million revenue shortfall on glitches in the firm’s
ERP rollout. Among the problems, the botched implementation prevented the
candy maker from getting product to stores during the critical period before
Halloween. Nike’s first SCM and ERP implementation was labeled a “disaster”;
their systems were blamed for over $100 million in lost sales.C. Koch, “Nike
Rebounds: How (and Why) Nike Recovered from Its Supply Chain Disaster,” CIO,
June 15, 2004. Even tech firms aren’t immune to software implementation
blunders. HP once blamed a $160 million loss on problems with its ERP
systems.R. Charette, “Why Software Fails,” IEEE Spectrum, September 2005.
Manager beware—there are no silver bullets. For insight on the causes of
massive software failures, and methods to improve the likelihood of success,

Chapter 9 Understanding Software: A Primer for Managers

9.3 Application Software 326

see Section 9.6 "Total Cost of Ownership (TCO): Tech Costs Go Way beyond the
Price Tag".

KEY TAKEAWAYS

• Application software focuses on the work of a user or an organization.
• Desktop applications are typically designed for a single user. Enterprise

software supports multiple users in an organization or work group.
• Popular categories of enterprise software include ERP (enterprise

resource planning), SCM (supply chain management), CRM (customer
relationship management), and BI (business intelligence) software,
among many others.

• These systems are used in conjunction with database management
systems, programs that help firms organize, store, retrieve, and
maintain data.

• ERP and other packaged enterprise systems can be challenging and
costly to implement, but can help firms create a standard set of
procedures and data that can ultimately lower costs and streamline
operations.

• The more application software that is available for a platform, the more
valuable that platform becomes.

• The DBMS stores and retrieves the data used by the other enterprise
applications. Different enterprise systems can be configured to share the
same database system in order share common data.

• Firms that don’t have common database systems with consistent
formats across their enterprise often struggle to efficiently manage
their value chain, and often lack the flexibility to introduce new ways of
doing business. Firms with common database systems and standards
often benefit from increased organizational insight and decision-making
capabilities.

• Enterprise systems can cost millions of dollars in software, hardware,
development, and consulting fees, and many firms have failed when
attempting large-scale enterprise system integration. Simply buying a
system does not guarantee its effective deployment and use.

• When set up properly, enterprise systems can save millions of dollars
and turbocharge organizations by streamlining processes, making data
more usable, and easing the linking of systems with software across the
firm and with key business partners.

Chapter 9 Understanding Software: A Primer for Managers

9.3 Application Software 327

fwk-38086-ch09_s06#fwk-38086-ch09_s06
fwk-38086-ch09_s06#fwk-38086-ch09_s06

QUESTIONS AND EXERCISES

1. What is the difference between desktop and enterprise software?
2. Who are the two leading ERP vendors?
3. List the functions of a business that might be impacted by an ERP.
4. What do the acronyms ERP, CRM, SCM, and BI stand for? Briefly describe

what each of these enterprise systems does.
5. Where in the “layer cake” analogy does the DBMS lie.
6. Name two companies that have realized multimillion-dollar benefits as

result of installing enterprise systems.
7. Name two companies that have suffered multimillion-dollar disasters as

result of failed enterprise system installations.
8. How much does the average large company spend annually on ERP

software?

Chapter 9 Understanding Software: A Primer for Managers

9.3 Application Software 328

9.4 Distributed Computing

LEARNING OBJECTIVES

After studying this section you should be able to do the following:

1. Understand the concept of distributed computing and its benefits.
2. Understand the client-server model of distributed computing.
3. Know what Web services are and the benefits that Web services bring to

firms.
4. Appreciate the importance of messaging standards and understand how

sending messages between machines can speed processes, cut costs,
reduce errors, and enable new ways of doing business.

When computers in different locations can communicate with one another, this is
often referred to as distributed computing17. Distributed computing can yield
enormous efficiencies in speed, error reduction, and cost savings and can create
entirely new ways of doing business. Designing systems architecture for distributed
systems involves many advanced technical topics. Rather than provide an
exhaustive decomposition of distributed computing, the examples that follow are
meant to help managers understand the bigger ideas behind some of the terms that
they are likely to encounter.

Let’s start with the term server18. This is a tricky one because it’s frequently used in
two ways: (1) in a hardware context a server is a computer that has been configured
to support requests from other computers (e.g., Dell sells servers) and (2) in a
software context a server is a program that fulfills requests (e.g., the Apache open
source Web server). Most of the time, server software resides on server-class
hardware, but you can also set up a PC, laptop, or other small computer to run
server software, albeit less powerfully. And you can use mainframe or super-
computer-class machines as servers, too.

The World Wide Web, like many other distributed computing services, is what geeks
call a client-server system. Client-server refers to two pieces of software, a client19

that makes a request, and a server that receives and attempts to fulfill the request.
In our WWW scenario, the client is the browser (e.g., Internet Explorer, Firefox,
Safari). When you type a Web site’s address into the location field of your browser,
you’re telling the client to “go find the Web server software at the address
provided, and tell the server to return the Web site requested.”

17. A form of computing where
systems in different locations
communicate and collaborate
to complete a task.

18. A program that fulfills the
requests of a client.

19. A software program that makes
requests of a server program.

Chapter 9 Understanding Software: A Primer for Managers

329

It is possible to link simple scripting languages to a Web server for performing
calculations, accessing databases, or customizing Web sites. But more advanced
distributed environments may use a category of software called an application
server20. The application server (or app server) houses business logic for a
distributed system. Individual Web services21 served up by the app server are
programmed to perform different tasks: returning a calculation (“sales tax for your
order will be $11.58”), accessing a database program (“here are the results you
searched for”), or even making a request to another server in another organization
(“Visa, please verify this customer’s credit card number for me”).

Figure 9.6

In this multitiered distributed system, client browsers on various machines (desktop, laptop, mobile) access the
system through the Web server. The cash register doesn’t use a Web browser, so instead the cash register logic is
programmed to directly access the services it needs from the app server. Web services accessed from the app server
may be asked to do a variety of functions, including perform calculations, access corporate databases, or even make
requests from servers at other firms (for example, to verify a customer’s credit card).

Those little chunks of code that are accessed via the application server are
sometimes referred to as Web services. The World Wide Web consortium defines
Web services as software systems designed to support interoperable machine-to-
machine interaction over a network.W3C, “Web Services Architecture,” W3C Working

20. Software that houses and
serves business logic for use
(and reuse) by multiple
applications.

21. Small pieces of code that are
accessed via the application
server which permit
interoperable machine-to-
machine interaction over a
network.

Chapter 9 Understanding Software: A Primer for Managers

9.4 Distributed Computing 330

Group Note, February 11, 2004. And when computers can talk together (instead of
people), this often results in fewer errors, time savings, cost reductions, and can
even create whole new ways of doing business! Each Web service defines the
standard method for other programs to request it to perform a task and defines the
kind of response the calling client can expect back. These standards are referred to
as application programming interfaces (APIs)22.

Look at the advantages that Web services bring a firm like Amazon. Using Web
services, the firm can allow the same order entry logic to be used by Web browsers,
mobile phone applications, or even by third parties who want to access Amazon
product information and place orders with the firm (there’s an incentive to funnel
sales to Amazon—the firm will give you a cut of any sales that you send Amazon’s
way). Organizations that have created a robust set of Web services around their
processes and procedures are said to have a service-oriented architecture
(SOA)23. Organizing systems like this, with separate applications in charge of client
presentation, business logic, and database, makes systems more flexible. Code can
be reused, and each layer can be separately maintained, upgraded, or migrated to
new hardware—all with little impact on the others.

Web services sound geeky, but here’s a concrete example illustrating their power.
Southwest Airlines had a Web site where customers could book flights, but many
customers also wanted to rent a car or book a hotel, too. To keep customers on
Southwest.com, the firm and its hotel and rental car partners created a set of Web
services and shared the APIs. Now customers visiting Southwest.com can book a
hotel stay and rental car on the same page where they make their flight
reservation. This process transforms Southwest.com into a full service travel
destination and allows the site to compete head-to-head with the likes of Expedia,
Travelocity, and Orbitz.J. McCarthy, “The Standards Body Politic,” InfoWorld, May
17, 2002.

Think about why Web services are important from a strategic perspective. By
adding hotel and rental car services, Southwest is now able to eliminate the travel
agent, along with any fees they might share with the agent. This shortcut allows the
firm to capture more profits or pass on savings to customers, securing its position
as the first place customers go for low-cost travel. And perhaps most importantly,
Southwest can capture key data from visitor travel searches and bookings
(something it likely couldn’t do if customers went to a site like Expedia or
Travelocity). Data is a hugely valuable asset, and this kind of customer data can be
used by Southwest to send out custom e-mail messages and other marketing
campaigns to bring customers back to the airline. As geeky as they might at first
seem, Web services can be very strategic!

22. Programming hooks, or
guidelines, published by firms
that tell other programs how to
get a service to perform a task
such as send or receive data.
For example, Amazon.com
provides APIs to let developers
write their own applications
and Websites that can send the
firm orders.

23. A robust set of Web services
built around an organizations
processes and procedures.

Chapter 9 Understanding Software: A Primer for Managers

9.4 Distributed Computing 331

Figure 9.7

Southwest.com uses Web services to allow car rental and hotel firms to book services through Southwest. This
process transforms Southwest.com into a full-service online travel agent.

Messaging Standards

Two additional terms you might hear within the context of distributed computing
are EDI and XML. EDI (electronic data interchange)24 is a set of standards for
exchanging information between computer applications. EDI is most often used as a
way to send the electronic equivalent of structured documents between different
organizations. Using EDI, each element in the electronic document, like a firm
name, address, or customer number, is coded so that it can be recognized by the
receiving computer program. Eliminating paper documents makes businesses faster
and lowers data entry and error costs. One study showed that firms that used EDI
decreased their error rates by 82 percent and their cost of producing each
document fell by up to 96 percent.“Petroleum Industry Continues to Explore EDI,”
National Petroleum News 90, no. 12 (November 1998).

EDI is a very old standard, with roots stretching back to the 1948 Berlin Air Lift.
While still in use, a new generation of more-flexible technologies for specifying data
standards are taking its place. Chief among the technologies replacing EDI is
extensible markup language (XML)25. XML has lots of uses, but in the context of
distributed systems, it allows software developers to create a set of standards for

24. A set of standards for
exchanging messages
containing formatted data
between computer
applications.

25. A tagging language that can be
used to identify data fields
made available for use by other
applications. Most APIs and
Web services send messages
where the data exchanged is
wrapped in identifying XML
tags.

Chapter 9 Understanding Software: A Primer for Managers

9.4 Distributed Computing 332

common data elements that, like EDI messages, can be sent between different kinds
of computers, different applications, and different organizations. XML is often
thought of as easier to code than EDI, and it’s more robust because it can be
extended—organizations can create formats to represent any kind of data (e.g., a
common part number, photos, the complaint field collected by customer support
personnel). In fact, most messages sent between Web services are coded in XML (the
technology is a key enabler in mashups, discussed in Chapter 7 "Peer Production,
Social Media, and Web 2.0"). Many computer programs also use XML as a way to
export and import data in a common format that can be used regardless of the kind
of computer hardware, operating system, or application program used. And if you
design Web sites, you might encounter XML as part of the coding behind the
cascading style sheets (CSS) that help maintain a consistent look and feel to the
various Web pages in a given Web site.

Chapter 9 Understanding Software: A Primer for Managers

9.4 Distributed Computing 333

fwk-38086-ch06#fwk-38086-ch06
fwk-38086-ch06#fwk-38086-ch06

Rearden Commerce: A Business Built on Web Services

Web services, APIs, and open standards not only transform businesses, they can
create entire new firms that change how we get things done. For a look at the
mashed-up, integrated, hyperautomated possibilities that Web services make
possible, check out Rearden Commerce, a Foster City, California, firm that is
using this technology to become what AMR’s Chief Research Office referred to
as “Travelocity on Steroids.”

Using Rearden, firms can offer their busy employees a sort of Web-based
concierge/personal assistant. Rearden offers firms a one-stop shop where
employees can not only make the flight, car, and hotel bookings they might do
from a travel agent, they can also book dinner reservations, sports and theatre
tickets, and arrange for business services like conference calls and package
shipping. Rearden doesn’t supply the goods and services it sells. Instead it acts
as the middleman between transactions. A set of open APIs to its Web services
allows Rearden’s one hundred and sixty thousand suppliers to send product
and service data to Rearden, and to receive booking and sales data from the
site.

In this ultimate business mashup, a mobile Rearden user could use her phone to
book a flight into a client city, see restaurants within a certain distance of her
client’s office, have these locations pop up on a Google map, have listings
accompanied by Zagat ratings and cuisine type, book restaurant reservations
through Open Table, arrange for a car and driver to meet her at her client’s
office at a specific time, and sync up these reservations with her firm’s
corporate calendaring systems. If something unexpected comes up, like a flight
delay, Rearden will be sure she gets the message. The system will keep track of
any cancelled reservation credits, and also records travel reward programs, so
Rearden can be used to spend those points in the future.

In order to pull off this effort, the Rearden maestros are not only skilled at
technical orchestration, but also in coordinating customer and supplier
requirements. As TechCrunch’s Erick Schonfeld put it, “The hard part is not only
the technology—which is all about integrating an unruly mess of APIs and Web
services—[it also involves] signing commercially binding service level
agreements with [now over 160,000] merchants across the world.” For its
efforts, Rearden gets to keep between 6 percent and 25 percent of every

Chapter 9 Understanding Software: A Primer for Managers

9.4 Distributed Computing 334

nontravel dollar spent, depending on the service. The firm also makes money
from subscriptions, and distribution deals.

The firm’s first customers were large businesses and included ConAgra,
GlaxoSmithKline, and Motorola. Rearden’s customers can configure the system
around special parameters unique to each firm: to favor a specific airline,
benefit from a corporate discount, or to restrict some offerings for approved
employees only. Rearden investors include JPMorgan Chase and American
Express—both of whom offer Rearden to their employees and customers. Even
before the consumer version was available, Rearden had over four thousand
corporate customers and two million total users, a user base larger than better-
known firms like Salesforce.com.M. Arrington, “Rearden Commerce: Time for
the Adults to Come In and Clean House,” TechCrunch, April 5, 2007; E. Schonfeld,
“At Rearden Commerce, Addiction Is Job One,” TechCrunch, May 6, 2008; and M.
Arrington, “2008: Rearden Commerce Has a Heck of a Year,” TechCrunch,
January 13, 2009. For all the pizzazz we recognize that, as a start-up, the future
of Rearden Commerce remains uncertain; however, the firm’s effective use of
Web services illustrates the business possibilities as technologies allow firms to
connect with greater ease and efficiency.

Connectivity has made our systems more productive and enables entire new
strategies and business models. But these wonderful benefits come at the price of
increased risk. When systems are more interconnected, opportunities for
infiltration and abuse also increase. Think of it this way—each “connection”
opportunity is like adding another door to a building. The more doors that have to
be defended, the more difficult security becomes. It should be no surprise that the
rise of the Internet and distributed computing has led to an explosion in security
losses by organizations worldwide.

Chapter 9 Understanding Software: A Primer for Managers

9.4 Distributed Computing 335

KEY TAKEAWAYS

• Client-server computing is a method of distributed computing where
one program (a client) makes a request to be fulfilled by another
program (a server).

• Server is a tricky term and is sometimes used to refer to hardware.
While server-class hardware refers to more powerful computers
designed to support multiple users, just about any PC or notebook can
be configured to run server software.

• Web servers serve up Web sites and can perform some scripting.
• Most firms serve complex business logic from an application server.
• Isolating a system’s logic in three or more layers (presentation or user

interface, business logic, and database) can allow a firm flexibility in
maintenance, reusability, and in handling upgrades.

• Web services allow different applications to communicate with one
another. APIs define the method to call a Web service (e.g., to get it to do
something), and the kind of response the calling program can expect
back.

• Web services make it easier to link applications as distributed systems,
and can make it easier for firms to link their systems across
organizations.

• Popular messaging standards include EDI (older) and XML. Sending
messages between machines instead of physical documents can speed
processes, drastically cut the cost of transactions, and reduce errors.

• Distributed computing can yield enormous efficiencies in speed, error
reduction, and cost savings and can create entirely new ways of doing
business.

• When computers can communicate with each other (instead of people),
this often results in fewer errors, time savings, cost reductions, and can
even create whole new ways of doing business.

• Web services, APIs, and open standards not only transform businesses,
they can create entire new firms that change how we get things done.

Chapter 9 Understanding Software: A Primer for Managers

9.4 Distributed Computing 336

QUESTIONS AND EXERCISES

1. Differentiate the term “server” used in a hardware context, from
“server” used in a software context.

2. Describe the “client-server” model of distributed computing. What
products that you use would classify as leveraging client-server
computing?

3. List the advantages that Web services have brought to Amazon.
4. How has Southwest Airlines utilized Web services to its competitive

advantage?
5. What is Rearden Commerce and which technologies does it employ?

Describe Rearden Technology’s revenue model. Who were Rearden
Technology’s first customers? Who were among their first investors?

6. What are the security risks associated with connectivity, the Internet,
and distributed processing?

Chapter 9 Understanding Software: A Primer for Managers

9.4 Distributed Computing 337

9.5 Writing Software

LEARNING OBJECTIVES

After studying this section you should be able to do the following:

1. Understand, at a managerial level, what programming languages are and
how software is developed.

2. Recognize that an operating system and microprocessor constrain the
platform upon which most compiled application software will run.

3. Understand what Java is and why it is significant.
4. Know what scripting languages are.

So you’ve got a great idea that you want to express in software—how do you go
about creating a program? Programmers write software in a programming
language26. While each language has its strengths and weaknesses, most
commercial software is written in C++ (pronounced “see plus plus”) or C#
(pronounced “see sharp”). Visual Basic (from Microsoft) and Java (from Sun) are
also among the more popular of the dozens of programming languages available.
Web developers may favor specialty languages like Ruby and Python, while
languages like SQL are used in databases.

Most professional programmers use an integrated development environment
(IDE)27 to write their code. The IDE includes a text editor, a debugger for sleuthing
out errors, and other useful programming tools. The most popular IDE for Windows
is Visual Studio, while Apple offers the Xcode IDE. Most IDEs can support several
different programming languages. The IDE will also compile28 a programmer’s
code, turning the higher-level lines of instructions that are readable by humans
into lower-level instructions expressed as the patterns of ones and zeros that are
readable by a computer’s microprocessor.

26. Provides the standards, syntax,
statements, and instructions
for writing computer software.

27. An application that includes an
editor (a sort of programmer’s
word processor), debugger, and
compiler, among other tools.

28. Step in which program code
written in a language that
humans can more easily
understand, is then converted
into a form (expressed in
patterns of ones and zeros)
that can be understood and
executed by a microprocessor.
Programmers using
conventional programming
languages must compile their
software before making it
available for execution.

Chapter 9 Understanding Software: A Primer for Managers

338

Figure 9.8

Microsoft’s Visual Studio IDE supports desktop, server, mobile, and cloud computing software development.

Look at the side of a box of commercial software and you’re likely to see system
requirements that specify the operating system and processor that the software is
designed for (e.g., “this software works on computers with Windows 7 and Intel-
compatible processors”). Wouldn’t it be great if software could be written once and
run everywhere? That’s the idea behind Java29—a programming language
developed by Sun Microsystems.

Java programmers don’t write code with specific operating system commands (say
for Windows, Mac OS X, or Linux), instead they use special Java commands to
control their user interface or interact with the display and other hardware. Java
programs can run on any computer that has a Java Virtual Machine (JVM), a
software layer that interprets Java code so that it can be understood by the
operating system and processor of a given computer. Java’s platform
independence—the ability for developers to “write once, run everywhere”—is its
biggest selling point. Many Web sites execute Java applets to run the animation you
might see in advertisements or games. Java has also been deployed on over six

29. A programming language,
initially developed by Sun
Microsystems, designed to
provide true platform
independence (“write once,
run anywhere”) for application
developers. In most cases, Java
apps are developed to be
executed by a Java Virtual
Machine—an interpreting layer
that translates code as it
executes, into the format
required by the operating
system and microprocessor.
Without Java, application
developers have to write and
compile software to execute
natively by a specific operating
system / microprocessor
combination (e.g., Windows/
Intel, Linux PowerPC, Mac/
Intel, Linux/Intel).

Chapter 9 Understanding Software: A Primer for Managers

9.5 Writing Software 339

billion mobile phones worldwide, and is popular among enterprise programmers
who want to be sure their programs can scale from smaller hardware up to high-
end supercomputers. As long as the machine receiving the Java code has a JVM,
then the Java application should run. However, Java has not been popular for
desktop applications. Since Java isn’t optimized to take advantage of interface
elements specific to the Mac or Windows, most Java desktop applications look
clunky and unnatural. Java code that runs through the JVM interpreter is also
slower than code compiled for the native OS and processor that make up a
platform.Some offerings have attempted to overcome the speed issues associated
with interpreting Java code. Just-in-time compilation stores code in native
processor-executable form after each segment is initially interpreted, further
helping to speed execution. Other environments allow for Java to be compiled
ahead of time so that it can be directly executed by a microprocessor. However, this
process eliminates code portability—Java’s key selling point. And developers
preparing their code for the JVM actually precompile code into something called
Java bytecode, a format that’s less human friendly but more quickly interpreted by
JVM software.

Scripting languages are the final category of programming tool that we’ll cover.
Scripting languages30 typically execute within an application. Microsoft offers a
scripting language called VB Script (a derivative of Visual Basic) to automate
functions in Office. And most browsers and Web servers support JavaScript, a
language that helps make the Web more interactive (despite its name, JavaScript is
unrelated to Java). Scripting languages are interpreted31 within their applications,
rather than compiled to run directly by a microprocessor. This distinction makes
them slower than the kinds of development efforts found in most commercial
software. But most scripting languages are usually easy to use, and are often used
both by professional programmers and power users.

30. Programming tool that
executes within an application.
Scripting languages are
interpreted within their
applications, rather than
compiled to run directly by a
microprocessor.

31. Languages where each line of
written code is converted (by a
software program, called an
“interpreter”) for execution at
run-time. Most scripting
languages are interpreted
languages. Many programmers
also write Java applications to
be interpreted by the Java
Virtual Machine.

Chapter 9 Understanding Software: A Primer for Managers

9.5 Writing Software 340

KEY TAKEAWAYS

• Programs are often written in a tool called an IDE, an application that
includes an editor (a sort of programmer’s word processor), debugger,
and compiler, among other tools.

• Compiling takes code from the high-level language that humans can
understand and converts them into the sets of ones and zeros in
patterns representing instructions that microprocessors understand.

• Popular programming languages include C++, C#, Visual Basic, and Java.
• Most software is written for a platform—a combination of an operating

system and microprocessor.
• Java is designed to be platform independent. Computers running Java

have a separate layer called a Java Virtual Machine that translates
(interprets) Java code so that it can be executed on an operating system/
processor combination. In theory, Java is “write once, run everywhere,”
as opposed to conventional applications that are written for an
operating system and compiled for an OS/processor combination.

• Java is popular on mobile phones, enterprise computing, and to make
Web sites more interactive. Java has never been a successful
replacement for desktop applications, largely because user interface
differences among the various operating systems are too great to be
easily standardized.

• Scripting languages are interpreted languages, such as VB Script or Java
Script. Many scripting languages execute within an application (like the
Office programs, a Web browser, or to support the functions of a Web
server). They are usually easier to program, but are less powerful and
execute more slowly than compiled languages.

Chapter 9 Understanding Software: A Primer for Managers

9.5 Writing Software 341

QUESTIONS AND EXERCISES

1. List popular programming languages.
2. What’s an IDE? Why do programmers use IDEs? Name IDEs popular for

Windows and Mac users.
3. What is the difference between a compiled programming language and

an interpreted programming language?
4. Name one advantage and one disadvantage of scripting languages.
5. In addition to computers, on what other technology has Java been

deployed? Why do you suppose Java is particularly attractive for these
kinds of applications?

6. What’s a JVM? Why do you need it?
7. What if a programmer wrote perfect Java code, but there was a bug on

the JVM installed on a given computer? What might happen?
8. Why would developers choose to write applications in Java? Why might

they skip Java and choose another programming language?
9. Why isn’t Java popular for desktop applications?

10. Go to http://www.java.com. Click on “Do I have Java?” Is Java running
on your computer? Which version?

Chapter 9 Understanding Software: A Primer for Managers

9.5 Writing Software 342

http://www.java.com

9.6 Total Cost of Ownership (TCO): Tech Costs Go Way beyond the Price
Tag

LEARNING OBJECTIVES

After studying this section you should be able to do the following:

1. List the different cost categories that comprise total cost of ownership.
2. Understand that once a system is implemented, the costs of maintaining

and supporting the system continue.
3. List the reasons that technology development projects fail and the

measures that can be taken to increase the probability of success.

Managers should recognize that there are a whole host of costs that are associated
with creating and supporting an organization’s information systems. Of course,
there are programming costs for custom software as well as purchase,
configuration, and licensing costs for packaged software, but there’s much, much
more.

There are costs associated with design and documentation (both for programmers
and for users). There are also testing costs. New programs should be tested
thoroughly across the various types of hardware the firm uses, and in conjunction
with existing software and systems, before being deployed throughout the
organization. Any errors that aren’t caught can slow down a business or lead to
costly mistakes that could ripple throughout an organization and its partners.
Studies have shown that errors not caught before deployment could be one
hundred times more costly to correct than if they were detected and corrected
beforehand.R. Charette, “Why Software Fails,” IEEE Spectrum, September 2005.

Once a system is “turned on,” the work doesn’t end there. Firms need to constantly
engage in a host of activities to support the system that may also include the
following:

• providing training and end user support
• collecting and relaying comments for system improvements
• auditing systems to ensure compliance32 (i.e., that the system operates

within the firm’s legal constraints and industry obligations)
• providing regular backup of critical data

32. Ensuring that an organization’s
systems operate within
required legal constraints, and
industry and organizational
obligations

Chapter 9 Understanding Software: A Primer for Managers

343

• planning for redundancy and disaster recovery in case of an outage
• vigilantly managing the moving target of computer security issues

With so much to do, it’s no wonder that firms spend 70 to 80 percent of their
information systems (IS) budgets just to keep their systems running.C. Rettig, “The
Trouble with Enterprise Software,” MIT Sloan Management Review 49, no. 1 (2007):
21–27. The price tag and complexity of these tasks can push some managers to
think of technology as being a cost sink rather than a strategic resource. These
tasks are often collectively referred to as the total cost of ownership (TCO)33 of an
information system. Understanding TCO is critical when making technology
investment decisions. TCO is also a major driving force behind the massive tech
industry changes discussed in Chapter 10 "Software in Flux: Partly Cloudy and
Sometimes Free".

Why Do Technology Projects Fail?

Even though information systems represent the largest portion of capital spending
at most firms, an astonishing one in three technology development projects fail to
be successfully deployed.L. Dignan, “Survey: One in 3 IT Projects Fail; Management
OK with It,” ZDNet, December 11, 2007. Imagine if a firm lost its investment in one
out of every three land purchases, or when building one in three factories. These
statistics are dismal! Writing in IEEE Spectrum, risk consultant Robert Charette
provides a sobering assessment of the cost of software failures, stating, “The yearly
tab for failed and troubled software conservatively runs somewhere from $60 to $70
billion in the United States alone. For that money, you could launch the space
shuttle one hundred times, build and deploy the entire 24-satellite Global
Positioning System, and develop the Boeing 777 from scratch—and still have a few
billion left over.”R. Charette, “Why Software Fails,” IEEE Spectrum, September 2005.

Why such a bad track record? Sometimes technology itself is to blame, other times
it’s a failure to test systems adequately, and sometimes it’s a breakdown of process
and procedures used to set specifications and manage projects. In one example, a
multimillion-dollar loss on the NASA Mars Observer was traced back to a laughably
simple oversight—Lockheed Martin contractors using English measurements, while
the folks at NASA used the metric system.R. Lloyd, “Metric Mishap Caused Loss of
NASA Orbiter,” CNN, September 20, 1999. Yes, a $125 million taxpayer investment
was lost because a bunch of rocket scientists failed to pay attention to third grade
math. When it comes to the success or failure of technical projects, the devil really
is in the details.

Projects rarely fail for just one reason. Project post-mortems often point to a
combination of technical, project management, and business decision blunders. The

33. All of the costs associated with
the design, development,
testing, implementation,
documentation, training and
maintenance of a software
system.

Chapter 9 Understanding Software: A Primer for Managers

9.6 Total Cost of Ownership (TCO): Tech Costs Go Way beyond the Price Tag 344

fwk-38086-ch10#fwk-38086-ch10
fwk-38086-ch10#fwk-38086-ch10

most common factors include the following:List largely based on R. Charette, “Why
Software Fails,” IEEE Spectrum, September 2005.

• Unrealistic or unclear project goals
• Poor project leadership and weak executive commitment
• Inaccurate estimates of needed resources
• Badly defined system requirements and allowing “feature creep”

during development
• Poor reporting of the project’s status
• Poor communication among customers, developers, and users
• Use of immature technology
• Unmanaged risks
• Inability to handle the project’s complexity
• Sloppy development and testing practices
• Poor project management
• Stakeholder politics
• Commercial pressures (e.g., leaving inadequate time or encouraging

corner-cutting)

Managers need to understand the complexity involved in their technology
investments, and that achieving success rarely lies with the strength of the
technology alone.

But there is hope. Information systems organizations can work to implement
procedures to improve the overall quality of their development practices.
Mechanisms for quality improvement include capability maturity model
integration (CMMI)34, which gauge an organization’s process maturity and
capability in areas critical to developing and deploying technology projects, and
provides a carefully chosen set of best practices and guidelines to assist quality and
process improvement.R. Kay, “QuickStudy: Capability Maturity Model Integration
(CMMI),” Computerworld, January 24, 2005; and Carnegie Mellon Software
Engineering Institute, Welcome to CMMI, 2009, http://www.sei.cmu.edu/cmmi.

Firms are also well served to leverage established project planning and software
development methodologies that outline critical businesses processes and stages
when executing large-scale software development projects. The idea behind these
methodologies is straightforward—why reinvent the wheel when there is an
opportunity to learn from and follow blueprints used by those who have executed
successful efforts. When methodologies are applied to projects that are framed with
clear business goals and business metrics, and that engage committed executive
leadership, success rates can improve dramatically.A. Shenhar and D. Dvir,

34. A process-improvement
approach (useful for but not
limited to software engineering
projects) that can assist in
assessing the maturity, quality,
and development of certain
organizational business
processes, and suggest steps
for their improvement.

Chapter 9 Understanding Software: A Primer for Managers

9.6 Total Cost of Ownership (TCO): Tech Costs Go Way beyond the Price Tag 345

http://www.sei.cmu.edu/cmmi

Reinventing Project Management: The Diamond Approach to Successful Growth and
Innovation (Boston: Harvard Business School Press, 2007).

While software development methodologies are the topic of more advanced
technology courses, the savvy manager knows enough to inquire about the
development methodologies and quality programs used to support large scale
development projects, and can use these investigations as further input when
evaluating whether those overseeing large scale efforts have what it takes to get the
job done.

KEY TAKEAWAYS

• The care and feeding of information systems can be complex and
expensive. The total cost of ownership of systems can include software
development and documentation, or the purchase price and ongoing
license and support fees, plus configuration, testing, deployment,
maintenance, support, training, compliance auditing, security, backup,
and provisions for disaster recovery. These costs are collectively
referred to as TCO, or a system’s total cost of ownership.

• Information systems development projects fail at a startlingly high rate.
Failure reasons can stem from any combination of technical, process,
and managerial decisions.

• IS organizations can leverage software development methodologies to
improve their systems development procedures, and firms can strive to
improve the overall level of procedures used in the organization
through models like CMMI. However, it’s also critical to engage
committed executive leadership in projects, and to frame projects using
business metrics and outcomes to improve the chance of success.

• System errors that aren’t caught before deployment can slow down a
business or lead to costly mistakes that could ripple throughout an
organization. Studies have shown that errors not caught before
deployment could be 100 times more costly to correct than if they were
detected and corrected beforehand.

• Firms spend 70 to 80 percent of their IS budgets just to keep their
systems running.

• One in three technology development projects fail to be successfully
deployed.

• IS organizations can employ project planning and software development
methodologies to implement procedures to improve the overall quality
of their development practices.

Chapter 9 Understanding Software: A Primer for Managers

9.6 Total Cost of Ownership (TCO): Tech Costs Go Way beyond the Price Tag 346

QUESTIONS AND EXERCISES

1. List the types of total ownership costs associated with creating and
supporting an organization’s information systems.

2. On average, what percent of firms’ IS budgets is spent to keep their
systems running?

3. What are the possible effects of not detecting and fixing major system
errors before deployment?

4. List some of the reasons for the failure of technology development
projects.

5. What is the estimated yearly cost of failed technology development
projects?

6. What was the reason attributed to the failure of the NASA Mars Observer
project?

7. What is capability maturity model integration (CMMI) and how is it used
to improve the overall quality of a firm’s development practices?

8. Perform an Internet search for “IBM Rational Portfolio Manager.” How
might IBM’s Rational Portfolio Manager software help companies realize
more benefit from their IT systems development project expenditures?
What competing versions of this product offered by other
organizations?

Chapter 9 Understanding Software: A Primer for Managers

9.6 Total Cost of Ownership (TCO): Tech Costs Go Way beyond the Price Tag 347

	Licensing
	Chapter 9 Understanding Software: A Primer for Managers
	9.1 Introduction
	9.2 Operating Systems
	9.3 Application Software
	9.4 Distributed Computing
	9.5 Writing Software
	9.6 Total Cost of Ownership (TCO): Tech Costs Go Way beyond the Price Tag

