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Chapter 16

Games and Strategic Behavior

Competitive theory studies price-taking consumers and firms—that is, people who
can’t individually affect the transaction prices. The assumption that market
participants take prices as given is justified only when there are many competing
participants. We have also examined monopoly, precisely because a monopoly, by
definition, doesn’t have to worry about competitors. Strategic behavior involves the
examination of the intermediate case, where there are few enough participants that
they take each other into account—and their actions individually matter—so that
the behavior of any one participant influences choices of the other participants.
That is, participants are strategic in their choices of action, recognizing that their
choices will affect choices made by others.

The right tool for the job of examining strategic behavior in economic
circumstances is game theory, the study of how people play games. Game theory
was pioneered by the mathematical genius John von Neumann (1903–1957). Game
theory has also been very influential in the study of military strategy; and, indeed,
the strategy of the cold war between the United States and the Soviet Union was
guided by game-theoretic analyses.An important reference for game theory is John
von Neumann (1903–1957) and Oskar Morgenstern (1902–1977), Theory of Games and
Economic Behavior (Princeton, NJ: Princeton University Press, 1944). Important
extensions were introduced by John Nash (1928–), the mathematician made famous
by Sylvia Nasar’s delightful book, A Beautiful Mind (Simon & Schuster, 1998). Finally,
applications in the military arena were pioneered by Nobel laureate Thomas
Schelling (1921–), The Strategy of Conflict (Cambridge: Cambridge University Press,
1960).

The theory provides a description that fits common games like poker or the board
game Monopoly, but will cover many other situations as well. In any game, there is
a list of players. Games generally unfold over time; at each moment in time, players
have information—possibly incomplete—about the current state of play and a set of
actions they can take. Both information and actions may depend on the history of
the game prior to that moment. Finally, players have payoffs and are assumed to
play in such a way as to maximize their anticipated payoff, taking into account their
expectations for the play of others. When the players, their information and
available actions, and payoffs have been specified, we have a game.
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16.1 Matrix Games

LEARNING OBJECTIVES

1. How are games modeled?
2. What is optimal play?

The simplest game is called a matrix payoff game with two players. In a matrix
payoff game1, all actions are chosen simultaneously. It is conventional to describe a
matrix payoff game as played by a row player and a column player. The row player
chooses a row in a matrix; the column player simultaneously chooses a column. The
outcome of the game is a pair of payoffs where the first entry is the payoff of the
row player, and the second is the payoff of the column player. Figure 16.1 "The
prisoner’s dilemma" provides an example of a “2 × 2” matrix payoff game—the most
famous game of all—which is known as the prisoner’s dilemma2. In the game, the
strategies are to confess or not to confess.

Figure 16.1 The prisoner’s dilemma

In the prisoner’s dilemma, two criminals named Row and Column have been
apprehended by the police and are being questioned separately. They are jointly
guilty of the crime. Each player can choose either to confess or not. If Row
confesses, we are in the top row of the matrix (corresponding to the row labeled
“Confess”). Similarly, if Column confesses, the payoff will be in the relevant column.
In this case, if only one player confesses, that player goes free and the other serves

1. Game in which all actions are
chosen simultaneously.

2. Game in which the strategies
are to confess or not to confess;
the first player to confess
avoids jail.
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20 years in jail. (The entries correspond to the number of years lost to prison. The
first entry is always Row’s payoff; the second entry is Column’s payoff.) Thus, for
example, if Column confesses and Row does not, the relevant payoff is the first
column and the second row.

Figure 16.2 Solving the prisoner’s dilemma

If Column confesses and Row does not, Row loses 20 years, and Column loses no
years; that is, it goes free. This is the payoff (–20, 0) in reverse color in Figure 16.2
"Solving the prisoner’s dilemma". If both confess, they are both convicted and
neither goes free, but they only serve 10 years each. Finally, if neither confesses,
there is a 10% chance that they are convicted anyway (using evidence other than
the confession), in which case they each average a year lost.

The prisoner’s dilemma is famous partly because it is readily solvable. First, Row
has a strict advantage to confessing, no matter what Column is going to do. If
Column confesses, Row gets –10 for confessing, –20 for not confessing, and thus is
better off confessing. Similarly, if Column doesn’t confess, Row gets 0 for confessing
(namely, goes free), –1 for not confessing, and is better off confessing. Either way,
no matter what Column does, Row should choose to confess.If Row and Column are
friends and care about each other, that should be included as part of the payoffs.
Here, there is no honor or friendship among thieves, and Row and Column only care
about what they themselves will get. This is called a dominant strategy3, a strategy
that is optimal no matter what the other players do.

The logic is exactly similar for Column: No matter what Row does, Column should
choose to confess. That is, Column also has a dominant strategy to confess. To
establish this, first consider what Column’s best action is, when Column thinks Row

3. A strategy that is optimal no
matter what the other players
do.
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will confess. Then consider Column’s best action when Column thinks Row won’t
confess. Either way, Column gets a higher payoff (lower number of years lost to
prison) by confessing.

The presence of a dominant strategy makes the prisoner’s dilemma particularly
easy to solve. Both players should confess. Note that this gets them 10 years each in
prison, and thus isn’t a very good outcome from their perspective; but there is
nothing they can do about it in the context of the game, because for each the
alternative to serving 10 years is to serve 20 years. This outcome is referred to as
(Confess, Confess), where the first entry is the row player’s choice, and the second
entry is the column player’s choice.

Figure 16.3 An entry game

Consider an entry game played by Microsoft (the row player) and Piuny (the column
player), a small start-up company. Both Microsoft and Piuny are thinking about
entering a new market for an online service. Figure 16.3 "An entry game" provides
the payoff structure.

In this case, if both companies enter, Microsoft ultimately wins the market, earning
2 and Piuny loses 2. If either firm has the market to itself, it gets 5 and the other
firm gets zero. If neither enters, they both get zero. Microsoft has a dominant
strategy to enter: It gets 2 when Piuny enters, 5 when Piuny doesn’t, and in both
cases it does better than when it doesn’t enter. In contrast, Piuny does not have a
dominant strategy: Piuny wants to enter when Microsoft doesn’t, and vice versa.
That is, Piuny’s optimal strategy depends upon Microsoft’s action; or, more
accurately, Piuny’s optimal strategy depends upon what Piuny believes Microsoft
will do.
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Piuny can understand Microsoft’s dominant strategy if it knows the payoffs of
Microsoft.It isn’t so obvious that one player will know the payoffs of another player,
which often causes players to try to signal that they are going to play a certain
way—that is, to demonstrate commitment to a particular advantageous strategy.
Such topics are taken up in business strategy and managerial economics. Thus,
Piuny can conclude that Microsoft is going to enter, and this means that Piuny
should not enter. Thus, the equilibrium of the game is for Microsoft to enter and
Piuny not to enter. This equilibrium is arrived at by the iterated elimination of
dominated strategies4, eliminating strategies by sequentially removing strategies
that are dominated for a player. First, we eliminated Microsoft’s dominated strategy
in favor of its dominant strategy. Microsoft had a dominant strategy to enter, which
means that the strategy of not entering was dominated by the strategy of entering,
so we eliminated the dominated strategy. That leaves a simplified game in which
Microsoft enters, as shown in Figure 16.4 "Eliminating a dominated strategy".

Figure 16.4 Eliminating a dominated strategy

In this simplified game, after the elimination of Microsoft’s dominated strategy,
Piuny also has a dominant strategy: not to enter. Thus, we iterate and eliminate
dominated strategies again—this time eliminating Piuny’s dominated
strategies—and wind up with a single outcome: Microsoft enters, and Piuny doesn’t.
The iterated elimination of dominated strategies solves the game.A strategy may be
dominated not by any particular alternate strategy but by a randomization over
other strategies, which is an advanced topic not considered here.

Figure 16.5 "A 3 x 3 game" shows another game, with three strategies for each
player.

4. Eliminating strategies by
sequentially removing
strategies that are dominated
for a player.
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Figure 16.5 A 3 x 3 game

The process of iterated elimination of dominated strategies is illustrated in Figure
16.6 "Eliminating a dominated strategy" by actually eliminating the rows and
columns, as follows. A reverse color (white text on black background) indicates a
dominated strategy.

Middle dominates Bottom for Row, yielding:

Figure 16.6 Eliminating a dominated strategy
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With Bottom eliminated, Left is now dominated for Column by either Center or
Right, which eliminates the Left Column. This is shown in Figure 16.7 "Eliminating
another dominated strategy".

Figure 16.7 Eliminating another dominated strategy

With Left and Bottom eliminated, Top now dominates Middle for Row, as shown in
Figure 16.8 "Eliminating a third dominated strategy".

Figure 16.8 Eliminating a third dominated strategy
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Finally, as shown in Figure 16.9 "Game solved", Column chooses Right over Center,
yielding a unique outcome after the iterated elimination of dominated strategies,
which is (Top, Right).

Figure 16.9 Game solved

The iterated elimination of dominated strategies is a useful concept, and when it
applies, the predicted outcome is usually quite reasonable. Certainly it has the
property that no player has an incentive to change his or her behavior given the
behavior of others. However, there are games where it doesn’t apply, and these
games require the machinery of a Nash equilibrium, named for Nobel laureate John
Nash (1928–).
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KEY TAKEAWAYS

• Strategic behavior arises where there are few enough market
participants that their actions individually matter, and where the
behavior of any one participant influences choices of the other
participants.

• Game theory is the study of how people play games. A game consists of
the players, their information and available actions, and payoffs.

• In a matrix payoff game, all actions are chosen simultaneously. The row
player chooses a row in a matrix; the column player simultaneously
chooses a column. The outcome of the game is a pair of payoffs where
the first entry is the payoff of the row player, and the second is the
payoff of the column player.

• In the prisoner’s dilemma, two criminals named Row and Column have
been apprehended by the police and are being questioned separately.
They are jointly guilty of the crime. Each player can choose either to
confess or not. Each player individually benefits from confessing, but
together they are harmed.

• A dominant strategy is a strategy that is best for a player no matter what
others choose.

• Iterated elimination of dominated strategies first removes strategies
dominated by others, then checks if any new strategies are dominated
and removes them, and so on. In many cases, iterated elimination of
dominated strategies solves a game.
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16.2 Nash Equilibrium

LEARNING OBJECTIVE

1. What is an equilibrium to a game?

In a Nash equilibrium5, each player chooses the strategy that maximizes his or her
expected payoff, given the strategies employed by others. For matrix payoff games
with two players, a Nash equilibrium requires that the row chosen maximize the
row player’s payoff (given the column chosen by the column player) and the
column, in turn, maximize the column player’s payoff (given the row selected by
the row player). Let us consider first the prisoner’s dilemma, which we have already
seen. Here it is illustrated once again in Figure 16.10 "Prisoner's dilemma again".

Figure 16.10 Prisoner's dilemma again

Given that the row player has chosen to confess, the column player also chooses to
confess because –10 is better than –20. Similarly, given that the column player
chooses confession, the row player chooses confession because –10 is better than
–20. Thus, for both players to confess is a Nash equilibrium. Now let us consider
whether any other outcome is a Nash equilibrium. In any other outcome, at least
one player is not confessing. But that player could get a higher payoff by confessing,
so no other outcome could be a Nash equilibrium.

5. Situation in which a player
chooses the strategy that
maximizes his or her expected
payoff, given the strategies
employed by others.
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The logic of dominated strategies extends to Nash equilibrium, except possibly for
ties. That is, if a strategy is strictly dominated, it can’t be part of a Nash equilibrium.
On the other hand, if it involves a tied value, a strategy may be dominated but still
be part of a Nash equilibrium.

The Nash equilibrium is justified as a solution concept for games as follows. First, if
the players are playing a Nash equilibrium, no one has an incentive to change his or
her play or to rethink his or her strategy. Thus, the Nash equilibrium has a “steady
state” in that no one wants to change his or her own strategy given the play of
others. Second, other potential outcomes don’t have that property: If an outcome is
not a Nash equilibrium, then at least one player has an incentive to change what he
or she is doing. Outcomes that aren’t Nash equilibria involve mistakes for at least
one player. Thus, sophisticated, intelligent players may be able to deduce each
other’s play, and play a Nash equilibrium.

Do people actually play Nash equilibria? This is a controversial topic and mostly
beyond the scope of this book, but we’ll consider two well-known games: tic-tac-toe
(see, for example, http://www.mcafee.cc/Bin/tictactoe/index.html) and chess. Tic-
tac-toe is a relatively simple game, and the equilibrium is a tie. This equilibrium
arises because each player has a strategy that prevents the other player from
winning, so the outcome is a tie. Young children play tic-tac-toe and eventually
learn how to play equilibrium strategies, at which point the game ceases to be very
interesting since it just repeats the same outcome. In contrast, it is known that
chess has an equilibrium, but no one knows what it is. Thus, at this point, we don’t
know if the first mover (white) always wins, or if the second mover (black) always
wins, or if the outcome is a draw (neither is able to win). Chess is complicated
because a strategy must specify what actions to take, given the history of actions,
and there are a very large number of potential histories of the game 30 or 40 moves
after the start. So we can be quite confident that people are not (yet) playing Nash
equilibria to the game of chess.

The second most famous game in game theory is a coordination game called the
battle of the sexes6. The battle of the sexes involves a married couple who are
going to meet each other after work but haven’t decided where they are meeting.
Their options are a Baseball game or the Ballet. Both prefer to be with each other,
but the Man prefers the Baseball game and the Woman prefers the Ballet. This gives
payoffs as shown in Figure 16.11 "The battle of the sexes".

6. A coordination game that
involves a married couple who
are going to meet each other
after work but haven’t decided
where they are meeting.
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Figure 16.11 The battle of the sexes

The Man would prefer that they both go to the Baseball game, and the Woman
prefers that both go to the Ballet. They each get 2 payoff points for being with each
other, and an additional point for being at their preferred entertainment. In this
game, iterated elimination of dominated strategies eliminates nothing. One can
readily verify that there are two Nash equilibria: one in which they both go to the
Baseball game and one in which they both go to the Ballet. The logic is this: If the
Man is going to the Baseball game, the Woman prefers the 2 points she gets at the
Baseball game to the single point she would get at the Ballet. Similarly, if the
Woman is going to the Baseball game, the Man gets three points going there versus
zero at the Ballet. Hence, going to the Baseball game is one Nash equilibrium. It is
straightforward to show that for both to go to the Ballet is also a Nash equilibrium
and, finally, that neither of the other two possibilities in which they go to separate
places is an equilibrium.

Now consider the game of matching pennies7, a child’s game in which the sum of
the payoffs is zero. In this game, both the row player and the column player choose
heads or tails, and if they match, the row player gets the coins, while if they don’t
match, the column player gets the coins. The payoffs are provided in Figure 16.12
"Matching pennies".

7. A child’s game in which the
sum of the payoffs is zero.
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Figure 16.12 Matching pennies

You can readily verify that none of the four possibilities represents a Nash
equilibrium. Any of the four involves one player getting –1; that player can convert
–1 to 1 by changing his or her strategy. Thus, whatever the hypothesized
equilibrium, one player can do strictly better, contradicting the hypothesis of a
Nash equilibrium. In this game, as every child who plays it knows, it pays to be
unpredictable, and consequently players need to randomize. Random strategies are
known as mixed strategies8 because the players mix across various actions.

KEY TAKEAWAYS

• In a Nash equilibrium, each player chooses the strategy that maximizes
his or her expected payoff, given the strategies employed by others.
Outcomes that aren’t Nash equilibria involve mistakes for at least one
player.

• The game called “the battle of the sexes” has two Nash equilibria.
• In the game of matching pennies, none of the four possibilities

represents a Nash equilibrium. Consequently, players need to
randomize. Random strategies are known as mixed strategies because
the players mix across various actions.

8. Random strategies.

Chapter 16 Games and Strategic Behavior

16.2 Nash Equilibrium 378



16.3 Mixed Strategies

LEARNING OBJECTIVE

1. What games require or admit randomization as part of their solution?

Let us consider the matching pennies game again, as illustrated in Figure 16.13
"Matching pennies again".

Figure 16.13 Matching pennies again

Suppose that Row believes Column plays Heads with probability p. Then if Row
plays Heads, Row gets 1 with probability p and –1 with probability (1 – p), for an
expected value of 2p – 1. Similarly, if Row plays Tails, Row gets –1 with probability p
(when Column plays Heads), and 1 with probability (1 – p), for an expected value of
1 – 2p. This is summarized in Figure 16.14 "Mixed strategy in matching pennies".

If 2p – 1 > 1 – 2p, then Row is better off, on average, playing Heads than Tails.
Similarly, if 2p – 1 < 1 – 2p, then Row is better off playing Tails than Heads. If, on the
other hand, 2p – 1 = 1 – 2p, then Row gets the same payoff no matter what Row does.
In this case, Row could play Heads, could play Tails, or could flip a coin and
randomize Row’s play.

Chapter 16 Games and Strategic Behavior
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A mixed strategy Nash equilibrium9 involves at least one player playing a
randomized strategy and no player being able to increase his or her expected payoff
by playing an alternate strategy. A Nash equilibrium in which no player randomizes
is called a pure strategy Nash equilibrium10.

Figure 16.14 Mixed strategy in matching pennies

Note that randomization requires equality of expected payoffs. If a player is
supposed to randomize over strategy A or strategy B, then both of these strategies
must produce the same expected payoff. Otherwise, the player would prefer one of
them and wouldn’t play the other.

Computing a mixed strategy has one element that often appears confusing. Suppose
that Row is going to randomize. Then Row’s payoffs must be equal for all strategies
that Row plays with positive probability. But that equality in Row’s payoffs doesn’t
determine the probabilities with which Row plays the various rows. Instead, that
equality in Row’s payoffs will determine the probabilities with which Column plays
the various columns. The reason is that it is Column’s probabilities that determine
the expected payoffs for Row; if Row is going to randomize, then Column’s
probabilities must be such that Row is willing to randomize.

Thus, for example, we computed the payoff to Row of playing Heads, which was 2p –
1, where p was the probability that Column played Heads. Similarly, the payoff to
Row of playing Tails was 1 – 2p. Row is willing to randomize if these are equal,
which solves for p = ½.

Now let’s try a somewhat more challenging example and revisit the battle of the
sexes. Figure 16.15 "Mixed strategy in battle of the sexes" illustrates the payoffs
once again.

9. A Nash equilibrium in which at
least one player plays a
randomized strategy and no
player is able to increase his or
her expected payoff by playing
an alternate strategy.

10. A Nash equilibrium in which no
player randomizes.
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Figure 16.15 Mixed strategy in battle of the sexes

This game has two pure strategy Nash equilibria: (Baseball, Baseball) and (Ballet,
Ballet). Is there a mixed strategy? To compute a mixed strategy, let the Woman go
to the Baseball game with probability p, and the Man go to the Baseball game with
probability q. Figure 16.16 "Full computation of the mixed strategy" contains the
computation of the mixed strategy payoffs for each player.

Figure 16.16 Full computation of the mixed strategy

For example, if the Man (row player) goes to the Baseball game, he gets 3 when the
Woman goes to the Baseball game (probability p), and otherwise gets 1, for an
expected payoff of 3p + 1(1 – p) = 1 + 2p. The other calculations are similar, but you
should definitely run through the logic and verify each calculation.

A mixed strategy in the battle of the sexes game requires both parties to randomize
(since a pure strategy by either party prevents randomization by the other). The
Man’s indifference between going to the Baseball game and to the Ballet requires 1 +
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2p = 2 – 2p, which yields p = ¼. That is, the Man will be willing to randomize which
event he attends if the Woman is going to the Ballet ¾ of the time, and otherwise to
the Baseball game. This makes the Man indifferent between the two events because
he prefers to be with the Woman, but he also likes to be at the Baseball game. To
make up for the advantage that the game holds for him, the Woman has to be at the
Ballet more often.

Similarly, in order for the Woman to randomize, the Woman must get equal payoffs
from going to the Baseball game and going to the Ballet, which requires 2q = 3 – 2q,
or q = ¾. Thus, the probability that the Man goes to the Baseball game is ¾, and he
goes to the Ballet ¼ of the time. These are independent probabilities, so to get the
probability that both go to the Baseball game, we multiply the probabilities, which
yields 3/16. Figure 16.17 "Mixed strategy probabilities" fills in the probabilities for
all four possible outcomes.

Figure 16.17 Mixed strategy probabilities

Note that more than half of the time (Baseball, Ballet) is the outcome of the mixed
strategy and the two people are not together. This lack of coordination is generally
a feature of mixed strategy equilibria. The expected payoffs for both players are
readily computed as well. The Man’s payoff is 1 + 2p = 2 – 2p, and since p = ¼, the
Man obtains 1½. A similar calculation shows that the Woman’s payoff is the same.
Thus, both do worse than coordinating on their less preferred outcome. But this
mixed strategy Nash equilibrium, undesirable as it may seem, is a Nash equilibrium
in the sense that neither party can improve his or her own payoff, given the
behavior of the other party.
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In the battle of the sexes, the mixed strategy Nash equilibrium may seem unlikely;
and we might expect the couple to coordinate more effectively. Indeed, a simple call
on the telephone should rule out the mixed strategy. So let’s consider another game
related to the battle of the sexes, where a failure of coordination makes more sense.
This is the game of “chicken.” In this game, two players drive toward one another,
trying to convince the other to yield and ultimately swerve into a ditch. If both
swerve into the ditch, we’ll call the outcome a draw and both get zero. If one
swerves and the other doesn’t, the driver who swerves loses and the other driver
wins, and we’ll give the winner one point.Note that adding a constant to a player’s
payoffs, or multiplying that player’s payoffs by a positive constant, doesn’t affect
the Nash equilibria—pure or mixed. Therefore, we can always let one outcome for
each player be zero, and another outcome be one. The only remaining question is
what happens when neither yield, in which case a crash results. In this version, the
payoff has been set at four times the loss of swerving, as shown in Figure 16.18
"Chicken", but you can change the game and see what happens.

Figure 16.18 Chicken

This game has two pure strategy equilibria: (Swerve, Don’t) and (Don’t, Swerve). In
addition, it has a mixed strategy. Suppose that Column swerves with probability p.
Then Row gets 0p + –1(1 – p) from swerving, 1p + (–4)(1 – p) from not swerving, and
Row will randomize if these are equal, which requires p = ¾. That is, the probability
that Column swerves in a mixed strategy equilibrium is ¾. You can verify that the
row player has the same probability by setting the probability that Row swerves
equal to q and computing Column’s expected payoffs. Thus, the probability of a
collision is 1/16 in the mixed strategy equilibrium.
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The mixed strategy equilibrium is more likely, in some sense, in this game: If the
players already knew who was going to yield, they wouldn’t actually need to play
the game. The whole point of the game is to find out who will yield, which means
that it isn’t known in advance. This means that the mixed strategy equilibrium is, in
some sense, the more reasonable equilibrium.

Figure 16.19 Rock, paper, scissors

“Rock, paper, scissors” is a child’s game in which two children use their hands to
simultaneously choose paper (hand held flat), scissors (hand with two fingers
protruding to look like scissors), or rock (hand in a fist). The nature of the payoffs is
that paper beats rock, rock beats scissors, and scissors beats paper. This game has
the structure that is illustrated in Figure 16.19 "Rock, paper, scissors".
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KEY TAKEAWAYS

• A mixed strategy Nash equilibrium involves at least one player playing a
randomized strategy and no player being able to increase his or her
expected payoff by playing an alternate strategy.

• A Nash equilibrium without randomization is called a pure strategy
Nash equilibrium.

• If a player is supposed to randomize over two strategies, then both must
produce the same expected payoff.

• The matching pennies game has a mixed strategy and no pure strategy.
• The battle of the sexes game has a mixed strategy and two pure

strategies.
• The game of chicken is similar to the battle of the sexes and, like it, has

two pure strategies and one mixed strategy.
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EXERCISES

1. Let q be the probability that Row plays Heads. Show that Column is
willing to randomize, if and only if q = ½. (Hint: First compute Column’s
expected payoff when Column plays Heads, and then compute Column’s
expected payoff when Column plays Tails. These must be equal for
Column to randomize.)

2. Show that in the rock, paper, scissors game there are no pure strategy
equilibria. Show that playing all three actions with equal likelihood is a
mixed strategy equilibrium.

3. Find all equilibria of the following games:

Figure 16.20

4. If you multiply a player’s payoff by a positive constant, the equilibria of
the game do not change. Is this true or false, and why?
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16.4 Examples

LEARNING OBJECTIVE

1. How can game theory be applied to the economic settings?

Our first example concerns public goods. In this game, each player can either
contribute or not. For example, two roommates can either clean their apartment or
not. If they both clean, the apartment is nice. If one cleans, then that roommate
does all of the work and the other gets half of the benefits. Finally, if neither cleans,
neither is very happy. This suggests the following payoffs as shown in Figure 16.21
"Cleaning the apartment".

Figure 16.21 Cleaning the apartment

You can verify that this game is similar to the prisoner’s dilemma in that the only
Nash equilibrium is the pure strategy in which neither player cleans. This is a game-
theoretic version of the tragedy of the commons—even though both roommates
would be better off if both cleaned, neither do. As a practical matter, roommates do
solve this problem, using strategies that we will investigate when we consider
dynamic games.
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Figure 16.22 Driving on the right

As illustrated in Figure 16.22 "Driving on the right", in the “driving on the right”
game, the important consideration about which side of the road that cars drive on
is not necessarily the right side but the same side. If both players drive on the same
side, then they each get one point; otherwise, they get zero. You can readily verify
that there are two pure strategy equilibria, (Left, Left) and (Right, Right), and a
mixed strategy equilibrium with equal probabilities. Is the mixed strategy
reasonable? With automobiles, there is little randomization. On the other hand,
people walking down hallways often seem to randomize, whether they pass on the
left or the right, and sometimes do that little dance where they try to get past each
other—one going left and the other going right, then both simultaneously
reversing, unable to get out of each other’s way. That dance suggests that the mixed
strategy equilibrium is not as unreasonable as it seems in the automobile
application.Continental Europe drove on the left side of the road until about the
time of the French Revolution. At that time, some individuals began driving on the
right as a challenge to royalty, who were on the left, essentially playing the game of
chicken with the ruling class. Driving on the right became a symbol of disrespect for
royalty. The challengers won out, forcing a shift to driving on the right. Besides
which side one drives on, another coordination game involves whether one stops or
goes on red. In some locales, the tendency for a few extra cars to proceed as a traffic
light changes from green to yellow to red forces those whose light changes to green
to wait; and such a progression can lead to the opposite equilibrium, where one
goes on red and stops on green. Under Mao Tse-tung, the Chinese considered
changing the equilibrium to proceeding on red and stopping on green (because “red
is the color of progress”), but wiser heads prevailed and the plan was scrapped.
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Figure 16.23 Bank location game

Consider a foreign bank that is looking to open a main office and a smaller office in
the United States. As shown in Figure 16.23 "Bank location game", the bank narrows
its choice for main office to either New York City (NYC) or Los Angeles (LA), and is
leaning toward Los Angeles. If neither city does anything, Los Angeles will get $30
million in tax revenue and New York will get $10 million. New York, however, could
offer a $10 million rebate, which would swing the main office to New York; but then
New York would only get a net of $20 million. The discussions are carried on
privately with the bank. Los Angeles could also offer the concession, which would
bring the bank back to Los Angeles.

Figure 16.24 Political mudslinging

On the night before an election, a Democrat is leading the Wisconsin senatorial
race. Absent any new developments, the Democrat will win and the Republican will
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lose. This is worth 3 to the Democrat; and the Republican, who loses honorably,
values this outcome at 1. The Republican could decide to run a series of negative
advertisements (“throwing mud”) against the Democrat and, if so, the Republican
wins—although loses his honor, which he values at 1, and so only gets 2. If the
Democrat runs negative ads, again the Democrat wins but loses his honor, so he
only gets 2. These outcomes are represented in the mudslinging game shown in
Figure 16.24 "Political mudslinging".

You have probably had the experience of trying to avoid encountering someone,
whom we will call Rocky. In this instance, Rocky is actually trying to find you. Here
it is Saturday night and you are choosing which party, of two possible parties, to
attend. You like Party 1 better and, if Rocky goes to the other party, you get 20. If
Rocky attends Party 1, you are going to be uncomfortable and get 5. Similarly, Party
2 is worth 15, unless Rocky attends, in which case it is worth 0. Rocky likes Party 2
better (these different preferences may be part of the reason why you are avoiding
him), but he is trying to see you. So he values Party 2 at 10, Party 1 at 5, and your
presence at the party he attends is worth 10. These values are reflected in Figure
16.25 "Avoiding Rocky".

Figure 16.25 Avoiding Rocky

Our final example involves two firms competing for customers. These firms can
either price High or Low. The most money is made if they both price High; but if one
prices Low, it can take most of the business away from the rival. If they both price
Low, they make modest profits. This description is reflected in Figure 16.26 "Price
cutting game".
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Figure 16.26 Price cutting game

KEY TAKEAWAYS

• The free-rider problem of public goods with two players can be
formulated as a game.

• Whether to drive on the right or the left is a game similar to battle of
the sexes.

• Many everyday situations are reasonably formulated as games.
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EXERCISES

1. Verify that the bank location game has no pure strategy equilibria and
that there is a mixed strategy equilibrium where each city offers a
rebate with probability ½.

2. Show that the only Nash equilibrium of the political mudslinging game
is a mixed strategy with equal probabilities of throwing mud and not
throwing mud.

3. Suppose that voters partially forgive a candidate for throwing mud in
the political mudslinging game when the rival throws mud, so that the
(Mud, Mud) outcome has payoff (2.5, 0.5). How does the equilibrium
change?

4. 1. Show that there are no pure strategy Nash equilibria in the
avoiding Rocky game.

2. Find the mixed strategy Nash equilibria.

3. Show that the probability that you encounter Rocky is 7
12 .

5. Show that the firms in the price-cutting game have a dominant strategy
to price low, so that the only Nash equilibrium is (Low, Low).
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16.5 Subgame Perfection

LEARNING OBJECTIVE

1. How do dynamic games play out?

So far, we have considered only games that are played simultaneously. Several of
these games—notably the price cutting and apartment cleaning games—are actually
played over and over again. Other games, like the bank location game, may only be
played once, but nevertheless are played over time. Recall the bank location game,
as illustrated once again in Figure 16.27 "Bank location game revisited".

Figure 16.27 Bank location game revisited

If neither city offered a Rebate, then Los Angeles won the bidding. So suppose that,
instead of the simultaneous move game, first New York City decided whether to
offer a Rebate, and then Los Angeles could decide to offer a Rebate. This sequential
structure leads to a game that looks like Figure 16.28 "Sequential bank location
(NYC payoff listed first)".

In this game, NYC makes the first move and chooses Rebate (to the left) or No
Rebate (to the right). If NYC chooses Rebate, LA can then choose Rebate or None.
Similarly, if NYC chooses No Rebate, LA can choose Rebate or None. The payoffs
[using the standard of (LA, NYC) ordering] are written below the choices.
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Figure 16.28 Sequential bank location (NYC payoff listed first)

What NYC would like to do depends upon what NYC believes LA will do. What
should NYC believe about LA? (Boy, does that rhetorical question suggest a lot of
facetious answers.) The natural belief is that LA will do what is in LA’s best interest.
This idea—that each stage of a dynamic game is played in an optimal way—is called
subgame perfection11.

Subgame perfection requires each player to act in its own best interest,
independent of the history of the game.Subgame perfection was introduced by
Nobel laureate Reinhard Selten (1930–). This seems very sensible and, in most
contexts, it is sensible. In some settings, it may be implausible. Even if I see a player
make a particular mistake three times in a row, subgame perfection requires that I
must continue to believe that that player will not make the mistake again. Subgame
perfection may be implausible in some circumstances, especially when it pays to be
considered somewhat crazy.

In the example, subgame perfection requires LA to offer a Rebate when NYC does
(since LA gets 20 by rebating vs. 10), and to not offer a Rebate when NYC doesn’t.
This is illustrated in the game, as shown in Figure 16.29 "Subgame perfection",

11. The idea that every stage of a
dynamic game is played in an
optimal way.
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using arrows to indicate LA’s choices. In addition, the actions that LA won’t choose
have been recolored in a light gray.

Once LA’s subgame perfection choices are taken into account, NYC is presented with
the choice of offering a Rebate, in which case it gets 0, or not offering a Rebate, in
which case it gets 10. Clearly the optimal choice for NYC is to offer No Rebate, in
which case LA doesn’t either; and the result is 30 for LA, and 10 for NYC.

Dynamic games are generally “solved backward” in this way. That is, first establish
what the last player does, then figure out—based upon the last player’s expected
behavior—what the penultimate player does, and so on.

Figure 16.29 Subgame perfection

We’ll consider one more application of subgame perfection. Suppose, in the game
“avoiding Rocky,” that Rocky is actually stalking you and can condition his choice
on your choice. Then you might as well go to the party you like best, because Rocky
is going to follow you wherever you go. This is represented in Figure 16.30 "Can’t
avoid Rocky".
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Figure 16.30 Can’t avoid Rocky

Since Rocky’s optimal choice eliminates your best outcomes, you make the best of a
bad situation by choosing Party 1. Here, Rocky has a second mover advantage12:
Rocky’s ability to condition on your choice means that by choosing second he does
better than he would do in a simultaneous game. In contrast, a first mover
advantage13 is a situation where choosing first is better than choosing
simultaneously. First mover advantages arise when going first influences the
second mover advantageously.

12. Situation in which choosing
second is better than choosing
simultaneously.

13. Situation in which choosing
first is better than choosing
simultaneously.
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KEY TAKEAWAYS

• To decide what one should do in a sequential game, one figures out what
will happen in the future, and then works backward to decide what to do
in the present.

• Subgame perfection requires each player to act in his or her own best
interest, independent of the history of the game.

• A first mover advantage is a situation where choosing first is better than
choosing simultaneously. First mover advantages arise when going first
influences the second mover advantageously.

• A second mover advantage is a situation where choosing second is better
than choosing simultaneously. Second mover advantages arise when
going second permits exploiting choices made by others.
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EXERCISES

1. Formulate the battle of the sexes as a sequential game, letting the
woman choose first. (This situation could arise if the woman were able
to leave a message for the man about where she has gone.) Show that
there is only one subgame perfect equilibrium, that the woman enjoys a
first mover advantage over the man, and that she gets her most
preferred outcome.

2. What payoffs would players receive if they played this two-
player sequential game below? Payoffs are listed in parentheses,
with Player 1’s payoffs always listed first. (Note that choosing
“in” allows the other player to make a decision, while choosing
“out” ends the game.)

Figure 16.31

3. Consider the following game:

Figure 16.32

a. Find all equilibria of the above game.
b. What is the subgame perfect equilibrium if you turn this into

a sequential game, with Column going first? With Row going
first?

c. In which game does Column get the highest payoff—the
simultaneous game, the sequential game when Column goes
first, or the sequential game when Column goes second?
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16.6 Supergames

LEARNING OBJECTIVES

1. What can happen in games that are repeated over and over?
2. What role does the threat of retaliation play?

Some situations, like the price-cutting game or the apartment cleaning game, are
played over and over. Such situations are best modeled as a supergame14.The
supergame was invented by Robert Aumann (1930–) in 1959. A supergame is a game
that is played an infinite number of times, where the players discount the future.
The game played each time is known as a stage game15. Generally supergames are
played in times 1, 2, 3, ….

Cooperation may be possible in supergames, if the future is important enough.
Consider the price-cutting game introduced previously and illustrated again in
Figure 16.33 "Price cutting game revisited".

Figure 16.33 Price cutting game revisited

The dominant strategy equilibrium to this game is (Low, Low). It is clearly a
subgame perfect equilibrium for the players to just play (Low, Low) over and over
again because, if that is what Firm 1 thinks that Firm 2 is doing, Firm 1 does best by
pricing Low, and vice versa. But that is not the only equilibrium to the supergame.

14. A game that is repeated an
infinite number of times.

15. The game that is repeated in a
supergame.
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Consider the following strategy, called a grim trigger strategy16, which involves
being nice initially but not nice forever when someone else isn’t cooperative. Price
High, until you see your rival price Low. After your rival has priced Low, price Low
forever. This is called a trigger strategy because an action of the other player
(pricing Low) triggers a change in behavior. It is a grim strategy because it punishes
forever.

If your rival uses a grim trigger strategy, what should you do? Basically, your only
choice is when to price Low because, once you price Low, your rival will price Low,
and then your best choice is also to price Low from then on. Thus, your strategy is
to price High up until some point t – 1, and then price Low from time t on. Your
rival will price High through t, and price Low from t + 1 on. This gives a payoff to
you of 15 from period 1 through t – 1, 25 in period t, and then 5 in period t + 1 on.
We can compute the payoff for a discount factor δ:

If –10 + 20δ < 0, it pays to price Low immediately, at t = 0, because it pays to price
Low; and the earlier that one prices Low, the higher the present value. If –10 + 20δ >
0, it pays to wait forever to price Low; that is, t = ∞. Thus, in particular, the grim
trigger strategy is an optimal strategy for a player when the rival is playing the
grim trigger strategy if δ ≥ ½. In other words, cooperation in pricing is a subgame
perfect equilibrium if the future is important enough; that is, the discount factor δ
is high enough.

The logic of this example is that the promise of future cooperation is valuable when
the future itself is valuable, and that promise of future cooperation can be used to
induce cooperation today. Thus, Firm 1 doesn’t want to cut price today because that
would lead Firm 2 to cut price for the indefinite future. The grim trigger strategy
punishes price cutting today with future Low profits.

Supergames offer more scope for cooperation than is illustrated in the price-cutting
game. First, more complex behavior is possible. For example, consider the game
shown in Figure 16.34 "A variation of the price-cutting game":

V t = 15(1 + δ + δ2 + … + δ t−1) + 25δ t + 5(δ t+1 + δ t+2 + …)

= 15
1 − δ t

1 − δ
+ 25δ t + 5

δ t

1 − δ
=

15
1 − δ

−
δ t

1 − δ
(15 − 25(1 − δ) − 5δ) =

15
1 − δ

−
δ t

1 − δ
(−10 + 20δ).

16. Strategy that involves being
nice initially but not nice
forever when someone else
isn’t cooperative.
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Figure 16.34 A variation of the price-cutting game

Here, again, the unique equilibrium in the stage game is (Low, Low). But the
difference between this game and the previous game is that the total profits of
Firms 1 and 2 are higher in either (High, Low) or (Low, High) than in (High, High).
One solution is to alternate between (High, Low) and (Low, High). Such alternation
can also be supported as an equilibrium, using the grim trigger strategy—that is, if a
firm does anything other than what it is supposed to do in the alternating solution,
the firms instead play (Low, Low) forever.

The folk theorem17 says that if the value of the future is high enough, any outcome
that is individually rational can be supported as an equilibrium to the supergame.
Individual rationality18 for a player in this context means that the outcome offers
a present value of profits at least as high as that offered in the worst equilibrium in
the stage game from that player’s perspective. Thus, in the price-cutting game, the
worst equilibrium of the stage game offered each player 5, so an outcome can be
supported if it offers each player at least a running average of 5.

The simple logic of the folk theorem is this. First, any infinite repetition of an
equilibrium of the stage game is itself a subgame perfect equilibrium. If everyone
expects this repetition of the stage game equilibrium, no one can do better than to
play his or her role in the stage game equilibrium every period. Second, any other
plan of action can be turned into a subgame perfect equilibrium merely by
threatening any agent who deviates from that plan with an infinite repetition of the
worst stage game equilibrium from that agent’s perspective. That threat is credible
because the repetition of the stage game equilibrium is itself a subgame perfect
equilibrium. Given such a grim trigger–type threat, no one wants to deviate from
the intended plan.

17. A theorem stating that if the
value of the future is high
enough, any outcome that is
individually rational can be
supported as an equilibrium to
the supergame.

18. Situation in which the outcome
offers a present value of profits
at least as high as that offered
in the worst equilibrium in the
stage game from that player’s
perspective.
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The folk theorem is a powerful result and shows that there are equilibria to
supergames that achieve very good outcomes. The kinds of coordination failures
that we saw in the battle of the sexes, and the failure to cooperate in the prisoner’s
dilemma, need not arise; and cooperative solutions are possible if the future is
sufficiently valuable.

However, it is worth noting some assumptions that have been made in our
descriptions of these games—assumptions that matter but are unlikely to be true in
practice. First, the players know their own payoffs. Second, they know their rival’s
payoffs. They possess a complete description of the available strategies and can
calculate the consequences of these strategies—not just for themselves but also for
their rivals. Third, each player maximizes his or her expected payoff; they know
that their rivals do the same; they know that their rivals know that everyone
maximizes; and so on. The economic language for this is the structure of the game,
and the players’ preferences are common knowledge. Few real-world games will
satisfy these assumptions exactly. Since the success of the grim trigger strategy
(and other strategies we haven’t discussed) generally depends upon such
knowledge, informational considerations may cause cooperation to break down.
Finally, the folk theorem shows us that there are lots of equilibria to supergames
but provides no guidance on which ones will be played. These assumptions can be
relaxed, although they may lead to wars on the equilibrium path “by
accident”—and a need to recover from such wars—so that the grim trigger strategy
becomes suboptimal.

KEY TAKEAWAYS

• A supergame is a game that is played over and over again without end,
where the players discount the future. The game played each time is
known as a stage game.

• Playing a “one-shot” Nash equilibrium to the stage game forever is a
subgame perfect equilibrium to the supergame.

• A grim trigger strategy involves starting play by using one behavior and,
if another player ever does something else, switching to one-shot Nash
behavior forever.

• The folk theorem says that if the value of the future is high enough, any
outcome that is individually rational can be supported as an equilibrium
to the supergame. Individual rationality for a player means that the
outcome offers a present value of profits at least as high as that offered
in the worst equilibrium in the stage game from that player’s
perspective.

• If players are patient, full cooperation is obtainable as one of many
subgame perfect equilibria to supergames.
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EXERCISE

1. Consider the game in Figure 16.34 "A variation of the price-cutting
game", and consider a strategy in which Firm 1 prices High in odd-
numbered periods and Low in even-numbered periods, while Firm 2
prices High in even-numbered periods and Low in odd-numbered
periods. If either deviates from these strategies, both firms price Low
from then on. Let δ be the discount factor. Show that these firms have a

payoff of 25
1−δ2 or 25δ

1−δ2 , depending upon which period it is. Then show

that the alternating strategy is sustainable if 10 + 5δ
1−δ ≤ 25δ

1−δ2 .
This, in turn, is equivalent to δ ≥ 6

⎯⎯
√ − 2.
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