This is “Finding Data”, section 3.3 from the book Geographic Information System Basics (v. 1.0). For details on it (including licensing), click here.

For more information on the source of this book, or why it is available for free, please see the project's home page. You can browse or download additional books there. To download a .zip file containing this book to use offline, simply click here.

Has this book helped you? Consider passing it on:
Creative Commons supports free culture from music to education. Their licenses helped make this book available to you. helps people like you help teachers fund their classroom projects, from art supplies to books to calculators.

3.3 Finding Data

Learning Objective

  1. The objective of this section is to identify and evaluate key considerations when searching for data.

Now that we have a basic understanding of data and information, where can we find such data and information? Though an Internet search will certainly come up with myriad sources and types of data, the hunt for relevant and useful data is often a challenging and iterative process. Therefore, prior to hopping online and downloading the first thing that appears from a web search, it is useful to frame our search for data with the following questions and considerations:

  1. What exactly is the purpose of the data? Given the fact the world is swimming in vast amounts of data, articulating why we need (or why we don’t need) a given set of data will streamline the search for useful and relevant data. To this end, the more specific we can be about the purpose of the needed data, the more efficient our search for data will be. For example, if we are interested in understanding and studying economic growth, it is useful to determine both temporal and geographic scales. In other words, for what time periods (e.g., 1850–1900) and intervals (e.g., quarterly, annually) are we interested, and at what level of analysis (e.g., national, regional, state)? Oftentimes, data availability, or more specifically, the lack of relevant data, will force us to change the purpose or scope of our original question. A clear purpose will yield a more efficient search for data and enables us to accept or discard quickly the various data sets that we may come across.
  2. The second question we need to ask ourselves is what data already exist and to what data do we have access already? Prior to searching for new data, it is always a good idea to take an inventory of the data that we already have. Such data may be from previous projects or analyses, or from colleagues and classmates, but the key point here is that we can save a lot of time and effort by using data that we already possess. Furthermore, by identifying what we have, we get a better understanding of what we need. For instance, though we may already have census data (i.e., attribute data), we may need updated geographic data that contains the boundaries of US states or counties.
  3. Next, we need to assess and evaluate the costs associated with data acquisition. Data acquisition costs go beyond financial costs. Just as important as the financial costs to data are those that involve your time. After all, time is money. The time and energy you spend on collecting, finding, cleaning, and formatting data are time and energy taken away from data analysis. Depending on deadlines, time constraints, and deliverables, it is critical to learn how to manage your time when looking for data.
  4. Finally, the format of the data that is needed is of critical importance. Though many programs can read many formats of data, there are some data types that can only be read by some programs and some programs that require particular data formats. Understanding what data formats you can use and those that you cannot will aid in your search for data. For instance, one of the most common forms of geographic information system (GIS) data is called the shapefileA common set of files used by many geographic information system (GIS) software programs that contain both spatial and attribute data.. Not all GIS programs can read or use shapefiles, but it may be necessary to convert to or from a shapefile or some other format. Hence, as noted earlier, the more data formats with which we are familiar, the better off we will be in our search for data because we will have an understanding of not only what we can use but also what format conversions will need to be made if necessary.

All these questions are of equal importance and being able to answer them will assist in a more efficient and effective search for data. Obviously, there are several other considerations behind the search for data, and in particular GIS data, but those listed here provide an initial pathway to a successful search for data.

As information technology evolves, and as more and more data are collected and distributed, the various forms of data that can be used with a GIS increases. Generally, and as discussed previously, a GIS uses and integrates two types of data: geographic data and attribute data. Sometimes the source of both geographic and attribute data are one in the same. For instance, the US Bureau of Census ( distributes geographic boundary files (e.g., census tract level, county level, state level) as well as the associated attribute data (e.g., population, race/ethnicity, income). What’s more is that such data are freely available at no charge. In many respects, US census data are exceptional: they are free and comprehensive. If only all data were free and comprehensive!

Obviously, each and every search for data will vary according to purpose, but data from governments tend to have good coverage and provide a point of reference from which other data can be added, compared, and evaluated. Whether you need satellite imagery data from the National Aeronautics and Space Administration ( or land use data from the United States Geological Survey (, such government sources tend to be reliable, reputable, and consistent. Another key element of most government data is that they are freely accessible to the public. In other words, there is no charge to use or to acquire the data. Data that are free to use are generally called public dataData that can be shared and distributed freely..

Unlike publicly available data, there are numerous sources of private or proprietary dataData that must be purchased and are subject to certain terms of use.. The main difference between public and private data is that the former tend to be free, and the latter must be acquired at a cost. Furthermore, there are often restrictions on the redistribution and dissemination of proprietary data sets (i.e., sharing the purchased data is not allowed). Again, depending on the subject matter, proprietary data may be the only option. Another reason for using proprietary data is that the data may be formatted and cleaned according to your needs. The trade-off between financial cost and time saved is one that must be seriously considered and evaluated when working with deadlines.

The search for data, and in particular the data that you need, is often the most time consuming aspect of any GIS-related project. Therefore, it is critical to try to define and clarify your data requirements and needs—from the temporal and geographic scales of data to the formats required—as clearly as possible and as early as possible. Such definition and clarity will pay dividends in your search for the right data, which in turn will yield better analyses and well-informed decisions.

Key Takeaway

  • Prior to searching for data, ask yourself the following questions: Why do I need the data? At what time scale do I need the data? At what geographic scale do I want the data? What data already exist? What format do I need the data?


  1. Identify five possible sources for data on the gross domestic product (GDP) for the countries in Africa.
  2. Identify two sources for geographic data (boundary files) for Africa.
  3. What kind of geographic data does the United Nations provide?